
MAP-I
Programa Doutoral em Informática

Green Software Engineering
Unidade Curricular em Paradigmas de Programação

Programming Paradigms
(UCPC)

UMinho, FEUP

October 2022

Resumo

This document describes a Ph.D. level course, corresponding to a Cur-
riculum Unit credited with 5 ECTS. It corresponds to a joint UMinho-FEUP
proposal for UCPC (Programming Paradigms) in the joint MAP-i doctoral
program in Informatics, organized by three Portuguese Universities (Mi-
nho, Aveiro, and Porto).

LECTURING TEAM

UMinho: João Saraiva
FEUP: João Paulo Fernandes
Roskilde University, Denmark Maja Hanne Kirkeby

(invited lecturer: confirmed)

Coordinator: João Saraiva

1



A. Programmatic Component

1. Theme, Justification and Context

Motivation

The world is increasingly aware of and concerned about sustainability and the
green movement. Computers and their software play a pivotal role in our
world, thus they have a special responsibility for social development and the
welfare of our planet. In this century, the situation is becoming critical since
software is everywhere! The widespread use of computer devices, from regu-
lar desktop computers, to laptops, to powerful mobile phones, to consumer
electronics, and to large data centers is changing the way software engineers
develop software. Indeed, in the forthcoming era of Artificial Intelligence (AI),
Internet of Things (IoT) and edge computing, there are new concerns which
developers have to consider when constructing software systems. While in the
previous century both computer manufacturers and software developers were
mainly focused in producing very fast computer systems, now energy con-
sumption is becoming the main bottleneck when developing such systems [1].

Only recently has the software engineering community started performing re-
search on developing energy efficient software, or green soft- ware. This is
shadowed when compared to the research already produced in the computer
hardware community. While research in green software is rapidly increasing,
several recent studies with software engineers show that they still miss tech-
niques, knowledge, and tools to develop greener software. Indeed, all such
studies suggest that green software should be part of a modern Computer Sci-
ence Curriculum.

1 Green Software Engineering: Course Content

The green software engineering module is a multidisciplinary course, combi-
ning several software engineering techniques and principles, namely:

Source Code Analysis and Transformation: In order to analyze and trans-
form software systems we introduce two powerful source code manipulation
techniques: Strategic and Aspect Oriented Programming. Strategic program-
ming is a generic tree traversal technique that allows for expressing powerful
abstract syntax tree analysis and transformations. Aspect oriented program-
ming is introduced to allow developers to instrument the base source code

2



without adding the energy monitoring intrusive code, but keeping it in one
aspect that is later weaved to the base program.

Green Aspect: In order to monitor the energy consumption, students need to
traverse and instrument the source code with calls to APIs providing energy
measurements at runtime. In our course, we consider two types of measu-
rements: energy estimation provided by manufacturers of the CPUs, namely
the RAPL framework developed by Intel [2, 3], or using hardware with energy
sensors, like for example the ODroid hardware board1.

Source Code Smells and Metrics: Code smells represent symptoms of poor
implementation choices when developing software. Code smells are not faults,
they make program understanding difficult, and possibly indicate a deeper
problem in the software. Software metrics are usually used to detect source
code smells, for example, a too long method smell.

Green Aspect: In our module on green software we present a catalog of energy
greedy programming practices for Java and Android [4]. This catalog can also
be seen as a energy smell catalog, where software metrics can be used to detect
such smells in the source code.

Program Refactoring: refactoring is a controlled source-to-source transfor-
mation technique for improving the design of an existing (source code) soft-
ware system. Its essence is applying a series of small semantic-preserving
transformations. Refactorings are usually associated with code smells: for each
smell there is a refactoring that eliminates it.

Green Aspect: We associate refactorings to the catalog of energy smells so that
students can use a green refactoring to eliminate red smells. Because the main
focus of refactoring is to improve comprehensibility, several refactorings may
negatively affect energy consumption. Students also analyze how refactorings
available from Java IDEs affect energy consumption. The catalog of green re-
factorings for Java data structures supported by the jStanley tool [5].

Technical Debt: Technical debt describes the gap between the current state
and the ideal state of a software system. The key idea of technical debt is
that software systems may include hard to understand/maintain/evolve ar-
tefacts, causing higher costs in the future development and maintenance acti-
vities. These extra costs can be seen as a type of debt that developers owe the
software system.

Green Aspect: In our module we introduce the concept of Energy Debt [6] as
the amount of unnecessary energy that a software system uses over time, due
to maintaining energy code smells for sustained periods.

1http://www.odroid.com

3



Software Testing and Benchmarking Infrastructures: Software testing aims
at ensuring that a software system is defect free. We present the usual levels of
testing: unit, integration, system, regression and beta testing. Automated test
case generation and property based testing is also studied in this course. Code
coverage and mutation-based testing is used to assess the quality of the test
suite. Moreover, we use testing framework and benchmarks infrastructures,
like Google’s Caliper2 in order to execute programs.

Green Aspect: To measure energy consumption, the source code needs to be
executed with proper inputs. We use system testing, where the automated test
case generation techniques produces real inputs of the program under testing.

Fault Localization: When a software systems fails running the defined/generated
test suite, programmers need to locate the fault and fix it. Spectrum-based
Fault Localization (SFL) relies on test cases to run the program, and it uses
statistical methods to assign probabilities of being faulty to source code com-
ponents (methods, classes, statements, etc).

Green Aspect: Abnormal energy consumption can be seen as a software fault.
In our course we defined a variant of SFL to locate energy leaks in the source
code: Spectrum-based Energy Leak Localization (SPELL) [7, 8]. Students can
use it to locate such energy hot-spots in their software.

Automated Program Repair: The goal of automated program repair is to take
a faulty program and a test suite, and automatically produce a patch that fixes
the program. The test suite provides the correctness criterion in this case, gui-
ding the repair towards a valid patch.

Green Aspect: SPELL adapts fault localization to the green software realm,
while green refactorings eliminate red smells with the aim of improving the
energy efficiency of programs. We combine these two techniques in order to
automate the energy-aware repair of energy inefficient software systems [9, 10].

2 Green Software Engineering: Objectives and Le-
arning Outcomes

The objectives of the green software module are:

• Be able to monitor and analyse the energy consumption of software sys-
tems.

2http://code.google.com/p/caliper/

4



• Become aware of the impact of programming practices on energy con-
sumption.

• Become familiar with the research problems in the field of green software
engineering.

At the end of this course, PhD students should be able

• to instrument, measure and analyze the energy consumption of software
systems.

• to locate energy inefficient (source) code in a software systems.

• to optimize the energy consumption of greedy software systems.

3 Green Software Engineeering: Course’s Structure

The module of green software is part of the software analysis and testing course.
This course is one semester long, with 5 ECTS. It is a non-mandatory course, in-
cluded in the first year (second semester) of the master program on Informatics
Engineering at Minho University.

The students have 3 hours per week in the classroom: one hour in a seminar
room, where all theories and techniques are presented. The remaining two we-
ekly hours are laboratory classes where students have the chance to experiment
the introduced techniques for software energy consumption. The evaluation
consists of two components: an individual written exam, and a group project
on analyzing and optimizing the energy consumption of a given software sys-
tem. The considered software system is the students’ project, developed in the
introductory course to object oriented programming the semester before (by
second year students). The idea is to provide students in the course with a
simple, non fully optimized system.

In order to analyze and optimize the energy consumption of Java based soft-
ware systems, we present the students a catalog of energy-greedy Java pro-
gramming practices. The main goal is to make students aware of some featu-
res of Java’s source code that may indicate an abnormal energy consumption
by the software. The students are also presented with a possible solution by
performing a refactoring of the source code into a more energy efficient one.
Moreover, software tools that locate such features and (semi) automatically
optimize the code are also presented. In laboratory sessions, the students are
able to experiment with smell detection and optimization. Then, outside of
class, students have to work in group (three students per group) and apply the
catalog/tools in order to optimize the energy consumption of a real software
project.

5



4 Green Software Engineeering: Supporting Tools

As reported in literature, there is a lack of tool support for sustainable software
engineering [11]. It is hard to train students on how to write green software
if we cannot measure the energy consumption of software. Therefore, easy-to-
use tools that can provide detailed and accurate power measurement play a
critical role in green computing and green software education. The lacking of
such tools and of a low cost infrastructure that can support lab experiments in
green software courses is clearly one of the key obstacles that prevent educators
from introducing green computing/software topics to the CS curriculum.

Fortunately, as power consumption becomes increasingly important, most ven-
dors today provide power measurement APIs such as Intel’s Running Average
Power Limit (RAPL) [2, 12, 3] and Nvidia’s Management Library (NVML) [13].
These APIs provide functionalities to measure the real-time power consump-
tion of CPU, DRAM, and GPU for programs running on desktop workstations
or servers. Since power data is accessed through machine specific registers
(MSRs), users may need special permission to log in an Linux OS to obtain
such data, which is not trivial for some students (especially undergraduate
students). A number of useful tools are also available for energy analysis of
applications running on mobile devices. For example, the Android Qualcomm
Trepn app [14] can profile hardware usage (GPS, Wifi, etc.), resource usage
(memory, CPU), and the power consumption of both the system and any stan-
dalone Android app that run on a Snapdragon chipset. PETRA [15] is another
model-based tool that can estimate the energy consumption of Android apps
at a coarse-grained level. Hardware-based power measurement tools that pro-
vide high frequency and high precision profiling (e.g. Monsoon [16]) are also
available but they are generally expensive.

Green Software Laboratory Tools: Under the umbrella of the Green Soft-
ware Laboratory project [17, 18], several tools and other software artifacts (i.e.,
software repositories) have been developed, which will support the laboratory
classes of this course, namely:

• SPELL [8]: A toolkit to measure the energy consumption of a Java ba-
sed program and detect potential energy hot spots through an adapted
Spectrum-based Fault Localization technique.

• jStanley [5]: An Eclipse plugin that automatically refactors Java collecti-
ons to more energy efficient ones.

• E-Debitum [19] - A SonarQube extension to manage the Energy Debt of
Android-based software systems. This tool detects the Energy Greedy
Android Patterns (EGAPs) presented in our energy smells ctalog for An-
droid [4].

6



• GreenSource and AnaDroid [20]: A repository of android source code ap-
plications tailored for green software analysis and a tool to static analyze
and dynamically monitor the energy consumption of such applications.

• E-Manafa [21] - A plug-and-play device-independent, model-based energy
profiler for Android devices.

These tools have been developed by former students who motivated by the
green software module of the course decided to perform their MSc and PhD
thesis in this active research field.

5 Course Structure and Contents

This course is structured in three units: the first two present the foundations of
source code analysis and transformations. In unit 3, we will present analysis
techniques for debugging and fault localization in software systems. Finally, in
unit 4, we will study analysis and transformations of source code in the context
of embedded computing.

Course unit Lecturer(s)
Energy Consumption: Monitoring Maja Hanne Kirkeby
Energy Consumption: Analysis João Paulo Fernandes
Energy Consumption: Fault Localization João Saraiva
Energy Consumption: Optmization João Saraiva & João P. Fernandes

4. Teaching Methods and Student Assessment

This course will consist of theoretical and practical components. In the theo-
retical component, a set of seminars will be delivered by the lecturing team,
invited speakers, and the students themselves.

• The basic and advanced contents of this course will be presented by the
lecturing team. We will be using lecturing material developed within re-
search groups, namely in the context of a MSc course on Software Analy-
sis and Testing with a Green Flavor offered at UMinho and the lecturing
material produced in the context of the SusTrainable project: a Strategic
Partnerships for higher education of the European Union coordinated by
João Paulo Fernandes.

• Students will give one presentation of proposed research papers. The
presentation will follow a standard conference talk model. The research
papers will be proposed by the lecturing team, and they consist of a se-
lection of recently published papers in conferences and journals in Green
Software.

7



The practical component consists of the development of an individual project.
This project requires the use of a specific software system for the monitoring,
analysis and optimization of the energy consumption of a software system. The
students are also expected to give a presentation, in the form of a tool demo,
of the software system they decide to use. They are also supposed to write a
report of the project as a research paper.

Student Assessment

During the this course the students will have to give a research talk, to develop
a research project, to give a tool demo talk presenting the software system they
adopt, and finally to write the project report as a scientific paper. Thus, the
student will be assessed through these four activities.

5. Basic Bibliographic References

• Book: Green in Software Engineering, Coral Calero, Mario Piattini, Sprin-
ger, 2015. https://doi.org/10.1007/978-3-319-08581-4

• Book: Software Sustainability, Coral Calero, Ma Ángeles Moraga, Mario
Piattini, Springer, 2021. https://doi.org/10.1007/978-3-030-69970-3

• Book Chapter: Patterns and Energy Consumption: Design, Implementation,
Studies, and Stories, D. Feitosa, L. Cruz, R. Abreu, J. P. Fernandes, M.
Couto, J. Saraiva, Springer International Publishing, Cham, 2021, pp.
89–121. https://doi.org/10.1007/978-3-030-69970-3_5

• Tutorial: Energy Consumption and Optimization of Software, Maja H Kirbeby,
COST ACTION CERCIRAS Summer School 2022, Split, Croacia, Septem-
ber 2022.

• Tutorial: Energy Debt: Foundations, techniques and tools, J. Saraiva, R. Rua,
SusTrainable Summer School 2022, Rijeka, Croacia, July, 2022, Revised
Selected Papers, Springer International Publishing, (to appear).

• CACM article: Energy efficiency: a new concern for application software de-
velopers, G. Pinto, F. Castor, Communications of the ACM 60 (12) (2017)
68–75. https://doi.org/10.1145/3154384

8



B. Lecturing Team

1. Team Presentation

This course is supported by a team involving researchers form both the Uni-
versity of Minho, School of Engineering (João Saraiva), and the University of
Porto, FEUP (João Paulo Fernandes).

All team members are working, and have worked actively in the past few ye-
ars, on topics that are directly related to the subjects covered by this course, as
detailed below.

2. Coordinator

The coordinator of the unit is João Saraiva.

3. Short Presentation of Team Members

In the sequel we introduce a brief presentation of each team member, which
includes, for each of them, up to 5 key publications related to the scientific area
in which this course is proposed.

João Saraiva is an Associate Professor at the Departmento de Informática, Uni-
versidade do Minho, Portugal, and a research member of HASLab/INESC
TEC. He obtained a Ph.D. degree in Computer Science from Utrecht Univer-
sity in 1999. His main research contributions have been in the field of pro-
gramming language design and implementation, program analysis and trans-
formation, and functional programming. He supervised 11 PhD projects (8
awarded and 3 running) and and has published over 100 publications (scopus
h-index: 18). He served in over 90 PCs of international events, and in the eva-
luation committees of 7 national agencies: Austria, Belgium, France, Portugal,
The Netherlands, Spain, and Uruguay.

He coordinated research projects both at national level with projects funded
by FCT and QREN, and at international level with projects funded by EPSRC
(UK), FLAD/NSF (USA), and by the EU. He is one of the founders of the
successful series of GTTSE summer schools and was the organizing chair of
ETAPS’07.

Key Publications:

9



• Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha,
João Paulo Fernandes, João Saraiva, Ranking Programming Languages by
Energy Efficiency. Journal of Science of Computer Programming, volume
205: 102609 (2021)

• Rui Pereira, Tiago Carção, Marco Couto, Jácome Cunha, João Paulo Fer-
nandes, João Saraiva, SPELLing out energy leaks: Aiding developers locate
energy inefficient code. Journal of Systems and Software, volume 161: 110463
(2020)

• João Saraiva, Ziliang Zong, Rui Pereira, Bringing Green Software to Com-
puter Science Curriculum: Perspectives from Researchers and Educators. 26th
ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2021), pages 498-504, ACM 2021.

• Marco Couto, Daniel Maia, João Saraiva, Rui Pereira, On energy debt: ma-
naging consumption on evolving software. Proceedings of the 3rd Internatio-
nal Conference on Technical Debt (TechDebt@ICSE 2020), Seoul, Republic
of Korea, pages 62-66, 2020.

• Rui Rua, Marco Couto, João Saraiva, GreenSource: a large-scale collection of
Android code, tests and energy metrics. 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR 2019), pages 176-180,
2019.

Funded Projects in Green Software:

• Sustrainable: Promoting Sustainability as a Fundamental Driver in Software
Development Training and Education (SusTrainable), projecto financiado pelo
Erasmus+ Programme KA203 - Strategic Partnerships for higher education of
the European Union (projecto 2020-1-PT01-KA203-078646). 2020-2023.

• GreenSoftwareLab – Towards an Engineering Discipline for Green Software,
projecto Financiado pela FCT, Investigador Principal, contracto ref. PTDC/EEI-
ESS/5341/2014. 2016-2020.

Supervision of (ongoing) PhD projects:

• Walter Lucas, Transformações seguras de código para rejuvenescimento de soft-
ware, Departamento de Ciências da Computação, Universidade de Bra-
sília, Brasil, início em 2020. Em curso. (co-supervisor, supervisor: Prof.
Rodrigo Bonifácio))

• José Nuno Macedo, Improve Software Quality by Combining Fuzz Testing and
Spectrum-based Fault Localization, PhD Student under FCT grant SFRH/BD/08184/2021,
Departamento de Informática, Universidade do Minho, início em 2018.
Em curso. (supervisor)

10



• Francisco José Ribeiro, Automated Program Repair, PhD Student under
FCT grant SFRH/BD/144938/2019, Departamento de Informática, Uni-
versidade do Minho, início em 2018. Em curso. (supervisor)

• Rui Rua, Green Software in the Large: Repository and Analysis, PhD Student
under FCT grant SFRH/BD/146624/2019, Departamento de Informá-
tica, Universidade do Minho, início em 2018. Em curso. (supervisor)

João Paulo Fernandes is Associate Professor at the Informatics Engineering
Department of the Faculty of Engineering of the University of Porto, Portugal.
His research is focused on the rigorous analysis and transformation of soft-
ware, with the general goal of optimizing its non-functional properties while
still ensuring its functional correctness.

For almost 10 years now, he is focused on optimizing the energy efficiency
of software systems, an area in which he tries to provide developers with in-
formation and tools to support the development of energy efficient software
and at the same time that he seeks to support end users, namely of mobile
devices, in adopting more efficient usage patterns. In these contexts, he has
founded/coordinate(d) and/or am involved in projects and initiatives such as
GreenHub, Green Sw Lab, GreenHaskell and Sustrainable.

Currently, he is also a member of the Artificial Intelligence and Computer Sci-
ence Laboratory of the University of Porto (LIACC). In the past, he has held dif-
ferent types of positions in several institutions such as the University of Minho
(Monitor, 2002-2004), the Polytechnic Institute of Porto (Assistant Professor,
2008-2010), the University of Porto, Faculty of Engineering (Assistant Profes-
sor, 2010-2012), the University of Beira Interior (Assistant Professor, 2012-2016)
and the University of Coimbra (Assistant Professor, 2016-2020).

He has graduated in Mathematics and Computer Science from the University
of Minho, in 2004 (best of class, with an average score of 17/20), having con-
ducted his graduation thesis under the PURe project. Later, in March 2009, he
received a Ph.D. degree from the same university, following his work on the
Design, Implementation and Calculation of Circular Programs.

Key Publications:

• Rui Pereira, Hugo Matalonga, Marco Couto, Fernando Castor, Bruno Ca-
bral, Pedro Carvalho, Simão Melo de Sousa, João Paulo Fernandes: Gre-
enHub: a large-scale collaborative dataset to battery consumption analysis of
android devices. Empir. Softw. Eng. 26(3): 38 (2021)

11



• Wellington Oliveira, Renato Oliveira, Fernando Castor, Gustavo Pinto,
João Paulo Fernandes: Improving energy-efficiency by recommending Java
collections. Empir. Softw. Eng. 26(3): 55 (2021)

• Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha,
João Paulo Fernandes, João Saraiva, Ranking Programming Languages by
Energy Efficiency. Journal of Science of Computer Programming, volume
205: 102609 (2021)

• Rui Pereira, Tiago Carção, Marco Couto, Jácome Cunha, João Paulo Fer-
nandes, João Saraiva, SPELLing out energy leaks: Aiding developers locate
energy inefficient code. Journal of Systems and Software, volume 161: 110463
(2020)

• Marco Couto, João Saraiva, João Paulo Fernandes: Energy Refactorings for
Android in the Large and in the Wild. SANER 2020: 217-228

Funded Projects in Green Software:

• Sustrainable: Promoting Sustainability as a Fundamental Driver in Software
Development Training and Education (SusTrainable), projecto financiado pelo
Erasmus+ Programme KA203 - Strategic Partnerships for higher education of
the European Union (projecto 2020-1-PT01-KA203-078646). Principal In-
vestigator, 2020-2023.

• GreenSoftwareLab – Towards an Engineering Discipline for Green Software,
projecto Financiado pela FCT, contracto ref. PTDC/EEIESS/5341/2014.
2016-2020.

Supervision of (ongoing) PhD projects:

• Cláudio Gomes, Quantum Computing applied to Sustainability, University
of Porto and CMU - USA , since September 2021. (supervisor)

• Bernardo Santos, On the Energy Efficiency of Compiler Optimizations, Uni-
versity of Porto, since September 2022. (supervisor)

Referências

[1] G. Pinto, F. Castor, Energy efficiency: a new concern for application soft-
ware developers, Communications of the ACM 60 (12) (2017) 68–75.
URL https://doi.org/10.1145/3154384

12



[2] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, C. Le, RAPL: memory
power estimation and capping, in: International Symposium on Low-
Power Electronics and Design (ISLPED), 2010 ACM/IEEE, IEEE, 2010, pp.
189–194.
URL https://doi.org/10.1145/1840845.1840883

[3] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, Z. Ou, RAPL in action:
Experiences in using RAPL for power measurements, ACM Trans. Model.
Perform. Eval. Comput. Syst. 3 (2) (mar 2018).
URL https://doi.org/10.1145/3177754

[4] M. Couto, J. Saraiva, J. P. Fernandes, Energy refactorings for android in
the large and in the wild, in: 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2020, pp. 217–
228.
URL https://doi.org/10.1109/SANER48275.2020.9054858

[5] R. Pereira, P. Simão, J. Cunha, J. Saraiva, jStanley: Placing a Green Thumb
on Java Collections, in: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, ACM, New
York, NY, USA, 2018, pp. 856–859.
URL http://doi.acm.org/10.1145/3238147.3240473

[6] M. Couto, D. Maia, J. Saraiva, R. Pereira, On energy debt: Managing con-
sumption on evolving software, in: Proceedings of the 3rd International
Conference on Technical Debt, TechDebt ’20, Association for Computing
Machinery, New York, NY, USA, 2020, p. 62–66.
URL https://doi.org/10.1145/3387906.3388628

[7] R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, J. Saraiva, Hel-
ping programmers improve the energy efficiency of source code, in: Pro-
ceedings of the 39th International Conference on Software Engineering
Companion, ICSE-C ’17, IEEE Press, 2017, p. 238–240.
URL https://doi.org/10.1109/ICSE-C.2017.80

[8] R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, J. Saraiva, Spel-
ling out energy leaks: Aiding developers locate energy inefficient code,
Journal of System and Software. 161 (2020).
URL https://doi.org/10.1016/j.jss.2019.110463

[9] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Saraiva, Energyware analysis,
in: 7th Workshop on Software Quality Analysis, Monitoring, Improve-
ment, and Applications (SQAMIA), Vol. 2217, CEUR Workshop Procee-
dings, 2018.

[10] R. Pereira, Energyware engineering: Techniques and tools for green soft-
ware development, Ph.D. thesis, Universidade do Minho (2018).

13



[11] D. Torre, G. Procaccianti, D. Fucci, S. Lutovac, G. Scanniello, On the pre-
sence of green and sustainable software engineering in higher education
curricula, in: Proceedings of the 1st International Workshop on Software
Engineering Curricula for Millennials, SECM ’17, IEEE Press, 2017, p.
54–60.
URL https://doi.org/10.1109/SECM.2017.4

[12] M. Dimitrov, C. Strickland, S.-W. Kim, K. Kumar, K. Doshi,
Intel® power governor, https://software.intel.com/en-us/
articles/intel-power-governor, accessed: 2017-10-12 (2015).

[13] NVIDIA Management Library, https://developer.nvidia.com/
nvidia-management-library-nvml (2021).

[14] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, S. Tarkoma, Mode-
ling, profiling, and debugging the energy consumption of mobile devices,
ACM Comput. Surv. 48 (3) (2015) 39:1–39:40.
URL http://doi.acm.org/10.1145/2840723

[15] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, A. De Lucia,
Software-based energy profiling of android apps: Simple, efficient and
reliable?, in: 2017 IEEE 24th international conference on software analysis,
evolution and reengineering (SANER), IEEE, 2017, pp. 103–114.
URL https://doi.org/10.1109/SANER.2017.7884613

[16] Monsoon, Monsoon solutions, inc., http://www.msoon.com/
LabEquipment/PowerMonitor/ (2018).

[17] Green Software Laboratory.
URL http://greenlab.di.uminho.pt/

[18] J. Saraiva, R. Abreu, J. Cunha, J. P. Fernandes, GreenSoftwareLab:
Towards an engineering discipline for green software, Impact 2018 (1)
(March 2018).
URL https://doi.org/10.21820/23987073.2018.9

[19] D. Maia, M. Couto, J. Saraiva, R. Pereira, E-Debitum: Managing Software
Energy Debt, in: Proceedings of the 35th IEEE/ACM International Confe-
rence on Automated Software Engineering Workshops, ASE ’20, Associa-
tion for Computing Machinery, New York, NY, USA, 2020, p. 170–177.
URL https://doi.org/10.1145/3417113.3422999

[20] R. Rua, M. Couto, J. a. Saraiva, GreenSource: A large-scale collection of
android code, tests and energy metrics, in: Proceedings of the 16th In-
ternational Conference on Mining Software Repositories, MSR ’19, IEEE
Press, 2019, p. 176–180.
URL https://doi.org/10.1109/MSR.2019.00035

14



[21] J. Saraiva, R. Rua, Energy Debt: Foundations, techniques and tools, in:
SusTrainable Summer School 2022, Rijeka, Croacia, July, 2022, Revised
Selected Papers, Springer International Publishing, (to appear).

15


