INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

0

0

0

О

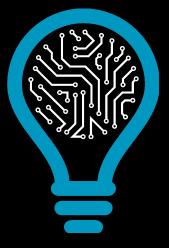
0

0

HIGH-ASSURANCE SOFTWARE LABORATORY

JANUARY 2022

from knowledge generation to science-based innovation • HASLab in brief

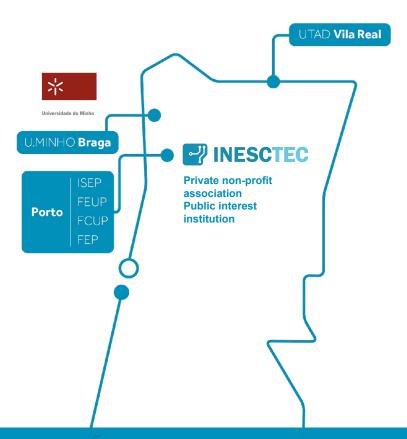

• Facts and figures

CLOUDinha laboratory

• What we are doing now

HASLAB IN BRIEF

HASLab is focused on the **design and implementation of high-assurance software systems**: software that is correct by design and resilient to environment faults and malicious attacks


To accomplish this mission, HASLab covers three main research areas:

- Distributed Systems
- Software Engineering
- Cyber Security

The contributions of HASLab to these three main areas range from fundamental research on formal methods and algorithms, to applied research on developing tools and middleware that address real-world demands stemming from long-term collaborations with industry

WHERE WE ARE

HASLab is a research center of INESC TEC and the University of Minho - located at U,Minho, Braga

RESEARCH LINES

To accomplish its mission, HASLab covers three main research lines within INESC TEC Computer Science domain

Research Lines

- Distributed Systems
- Software Engineering
- Cyber Security

DISTRIBUTED SYSTEMS

- Efficient data management
- · Large scale data storage and processing
- Distributed systems monitoring and benchmarking
- · Secure data storage and processing

Target

- Cloud computing
- High-Performance computing
- Big Data applications: data analytics; machine/deep learning
- Blockchain

SOFTWARE ENGINEERING

- Formal design and analysis of complex systems
- Static analysis and program verification
- Automatic testing and fault localisation
- Green computing
- Quantum computing
- Interface and usability

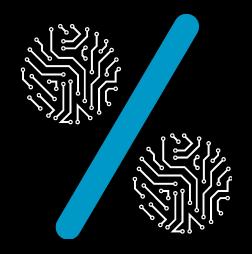
CYBER SECURITY

- Provable security
- Efficient and secure implementation of cryptographic software

INESCTEC

- Formal verification of cryptography proofs and implementations
- Domain-specific software development tools for cryptography
- Privacy-enhancing data-management technologies

SOME OF OUR PARTNERS


Industry

Academia

FACTS AND FIGURES

R&D PROJECTS | 2021

National R&D Programmes | 11 EU Programmes | 5 R&D Services & Consulting | 10 Other Funding Programmes | 3

INDEXED PUBLICATIONS | 2021

> 5 conference papers were published in CORE 2021 A* conference
 > 4 journal publications were published in Quartile 1

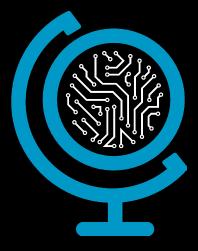
15 Indexed Journal Papers
30 Indexed Conference Articles
3 Concluded PhD Theses – Supervised
21 Ongoing PhD Theses - Supervised

4 Conferences, workshops and scientific sessions
2 Advanced training courses organised
5 Editorial roles in journals
21 Participation in program committees
5 Participation in fairs and industrial events

INESCTE

INNOVATION

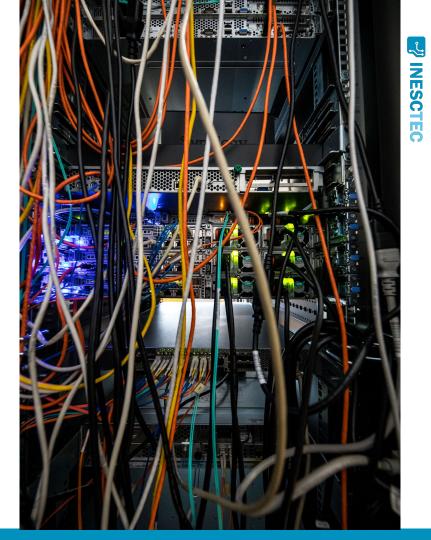
PATENT GRANTED IN 2019

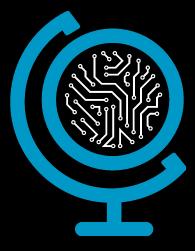


Keyruptive Technologies

Mobile app solution for secure cloud storage and management of digital assets such as cryptocurrency.

Keyruptive obtained a software patent in the United States of America


CLOUDINHA LABORATORY


CLOUDINHA LABORATORY

CLOUDInha is a cluster of servers that provides computational and storage support for research, development and education conducted at INESC TEC and University of Minho

Users have access to a bare-metal infrastructure composed by more than **100 servers**, connected through a **10 Gb network**, and with an aggregated computational power of **290 computing cores**, **1.8 TB of RAM**, and **41.28 TB of storage**

WHAT WE ARE DOING NOW

BIGHPC PROJECT DISTRIBUTED SYSTEMS

- Improve the monitoring of heterogeneous HPC infrastructures
 - Large-scale setup
 - Unified framework and metrics (jobs, compute nodes, storage nodes)
- Improve the deployment of Big Data applications and the management of HPC computational resources
 - Containerization technologies (e.g., singularity, charlie cloud)
- Improve storage performance and management for HPC services
 - Alleviate I/O pressure at the shared parallel file system
 - Improve Quality of Service
- <u>https://bighpc.wavecom.pt</u>

Partners:

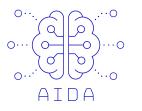
Funding:

PASTOR PROJECT DISTRIBUTED SYSTEMS

- Improve storage performance for AI frameworks
 - E.g., TensorFlow, Pytorch, ...
- Novel Software-Defined Storage (SDS) solution
 - reusable storage optimizations for AI applications (e.g., caching, tiering, QoS)
 - holistic visibility and automatic configuration of storage resources
 - easy integration with existing HPC software and hardware
- <u>https://pastor-project.github.io</u>

Funding

٠



- CENTRA Collaborations to Enable Transnational Cyberinfrastructure Applications
- Partners from Europe, US and Asia
- Efficient and Secure Data Management for HPC and Cloud Computing
 - Optimize the performance and dependability of data-centric applications (e.g., databases, data analytics, ML)
 - Privacy-by-design approach for storing and processing data at third-party infrastructures
 - <u>https://www.globalcentra.org/projects/#prv</u>

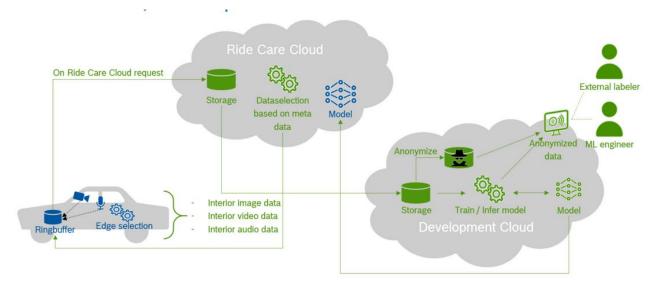
AIDA PROJECT DISTRIBUTED SYSTEMS

AIDA will provide **highly-configurable and rich data collection** and **monitoring**, **while preserving the current real-time, security and dependability** guarantees of the RAID platform:

 Image: Construction of the second second

https://aida.inesctec.pt/

Funding:



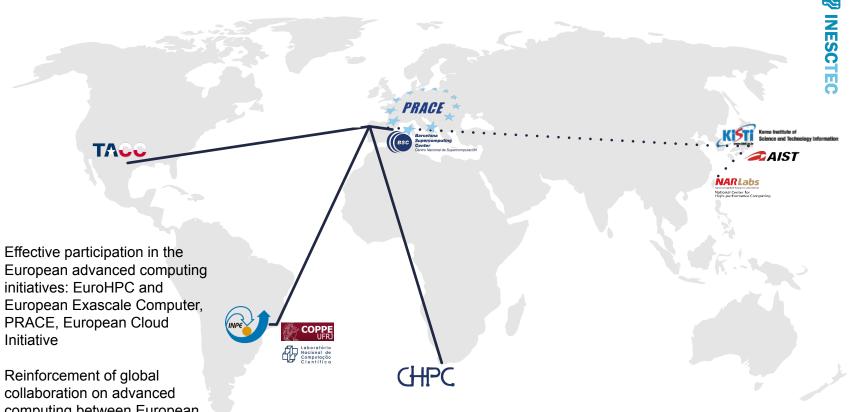
AURORA PROJECT DISTRIBUTED SYSTEMS

- Data management optimization, in the car itself and in the cloud.
 - In the cloud focus on data management and optimization in generic workloads and in optimizations for ML/DL workloads.
 - Privacy-preserving data management and processing.

SUSTAINABLE PROJECT DISTRIBUTED SYSTEMS

- National project to develop and testing innovative solutions to enable maximizing the sustainability of operating facilities for advanced computing and data centers
 - taking advantage of the Deucalion supercomputer
- Laboratory with a diverse set of energy conversion sources (electricity and thermal) both from the point of view of generation and storage
- Reduction of electric energy consumption by using predictive management
 algorithms and implementation of different energy efficiency measures

INTERCONNECT PROJECT DISTRIBUTED SYSTEMS

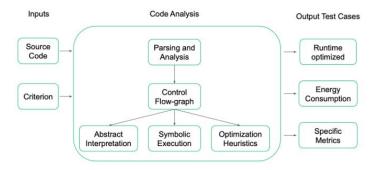

- Cross-domain interoperability with semantic data exchange for IoT
- Neutral Data Marketplaces and Hubs for data exchange
- Blockchain-based solutions to assist data management
- Applied data management and privacy preserving capabilities to high TRL solutions and very large-scale demonstrations

MACC DISTRIBUTED SYSTEMS

				Minho
1111 1111	11 11	11 11	11 11	
	11 11	11	11	Advanced
11 11 11		11	11	Computing
- ii - ii	11 11	11 11	11 11	
ii ii	11 11			Center

- National collaborative infrastructure to promote and support Open Science initiatives on supercomputing, data science and visualization;
- Sustainable computing and data infrastructure catering to national scientific and industrial communities and complementary to international partners;
- https://macc.fccn.pt/
- RNCA, <u>https://rnca.fccn.pt</u>

collaboration on advanced computing between European, USA (TACC), South America (LNCC) and Asia (PRAGMA) facilities

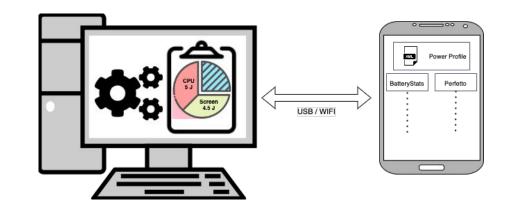

٠

٠

SOFTWARE QUALITY SOFTWARE ENGINEERING

- Green Computing:
 - Measure/estimate energy consumption;
 - Detect energy smells;
 - Recommend energy-friendly software practices;
- Software Testing and Analysis:
 - Fault Localization;
 - Program repair;
 - Automatic Generation of Program Executions;
 - Software Metrics.

Automatic Generation of Program Executions



GREEN COMPUTING Measure/Estimate Energy Consumption

E-MANAFA: Energy Monitor and ANAlyzer For Android

- Compatible with any Android device;
- Fine-grained component-level energy measurements;

https://github.com/RRua/e-manafa

GREEN COMPUTING Energy Efficiency Across Programming Languages

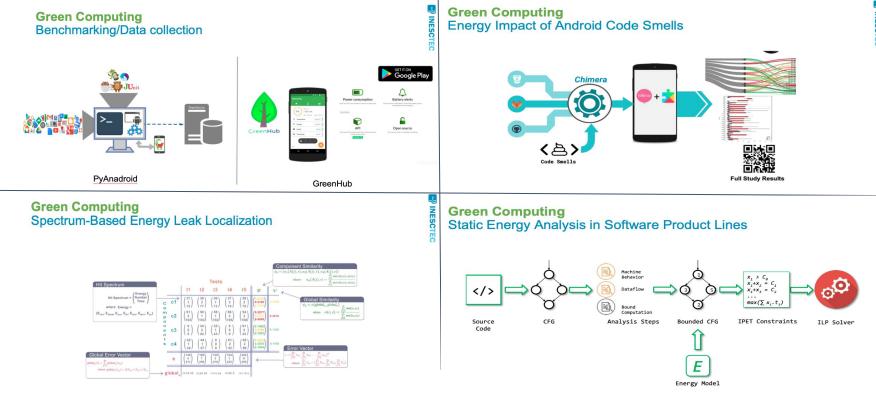
		Total							
					20	Energy & Memory	Energy & Time & Memory		
~	Energy		Time		Mb	C • Pascal	C • Pascal • Go		
(c) C	1.00	(c) C	1.00	(c) Pascal	1.00	Rust • C++ • Fortran • Go	Rust • C++ • Fortran		
(c) Rust	1.03	(c) Rust	1.04	(c) Go	1.05	Ada	Ada		
(c) C++	1.34	(c) C++	1.56	(c) C	1.17	Java • Chapel • Lisp	Java • Chapel • Lisp • Ocaml		
(c) Ada	1.70	(c) Ada	1.85	(c) Fortran	1.24	OCaml • Swift • Haskell	Swift • Haskell • C#		
(v) Java	1.98	(v) Java	1.89	(c) C++	1.34	C# • PHP	Dart • F# • Racket • Hack • PH		
(c) Pascal	2.14	(c) Chapel	2.14	(c) Ada	1.47	Dart • F# • Racket • Hack • Python			
(c) Chapel	2.18	(c) Go	2.83	(c) Rust	1.54	JavaScript • Ruby	TypeScript • Erlang		
(v) Lisp	2.27	(c) Pascal	3.02	(v) Lisp	1.92	TypeScript	Lua • JRuby • Perl		
(c) Ocaml	2.40	(c) Ocaml	3.09	(c) Haskell	2.45	Erlang • Lua • Perl	Lua • JRuby • I ell		
(c) Fortran	2.52	(v) C#	3.14	(i) PHP	2.57	IRuby			
(c) Swift	2.79	(v) Lisp	3.40	(c) Swift	2.71	JRuby			
(c) Haskell	3.10	(c) Haskell	3.55	(i) Python	2.80				
(v) C#	3.14	(c) Swift	4.20	(c) Ocaml	2.82	Time & Memory	Energy & Time		
(c) Go	3.23	(c) Fortran	4.20	(v) C#	2.85	C • Pascal • Go	C		
(i) Dart	3.83	(v) F#	6.30	(i) Hack	3.34	Rust • C++ • Fortran	Rust		
(v) F#	4.13	(i) JavaScript	6.52	(v) Racket	3.52	Ada	C++		
(i) JavaScript	4.45	(i) Dart	6.67	(i) Ruby	3.97	Java • Chapel • Lisp • Ocaml	Ada		
(v) Racket	7.91	(v) Racket	11.27	(c) Chapel	4.00	Haskell • C#			
(i) TypeScript	21.50	(i) Hack	26.99	(v) F#	4.25		Java		
(i) Hack	24.02	(i) PHP	27.64	(i) JavaScript	4.59	Swift • PHP	Pascal • Chapel		
(i) PHP	29.30	(v) Erlang	36.71	(i) TypeScript	4.69	F# • Racket • Hack • Python	Lisp • Ocaml • Go		
(v) Erlang	42.23	(i) Jruby	43.44	(v) Java	6.01	JavaScript • Ruby	Fortran • Haskell • C#		
(i) Lua	45.98	(i) TypeScript	46.20	(i) Perl	6.62	Dart • TypeScript • Erlang	Swift		
(i) Jruby	46.54	(i) Ruby	59.34	(i) Lua	6.72	JRuby • Perl	Dart • F#		
(i) Ruby	69.91	(i) Perl	65.79	(v) Erlang	7.20	Lua	JavaScript		
(i) Python	75.88	(i) Python	71.90	(i) Dart	8.64		Racket		
(i) Perl	79.58	(i) Lua	82.91	(i) Jruby	19.84		TypeScript • Hack		
		1					PHP		

• sites.google.com/view/energy-efficiency-languages

TypeScript • Ha PHP Erlang Lua • JRuby Ruby

or
• greenlab.di.uminho.pt

GREEN COMPUTING Energy Efficiency of Programming Practices


Results (25k pop)

	Concurrent				Linked					
	SkipListSet		HashSet		HashSet		TreeSet			
Methods	1	ms								
add	1.6822	87	1.7749	87	1.4917	75	1.4817	92		
addAll	1.4549	93	1.4771	89	1.9335	94	1.5101	93		
clear	1.4901	78	1.0586	64	1.3288	60	1.8566	73		
contains	1.4213	88	2.0685	78	1.0401	76	2.0446	79		
containsAll	1.8317	96	1.4000	77	2.1748	88	1.4443	89		
iterateAll	1.9225	99	1.4554	92	1.2907	83	1.3844	83		
iterator	1.6096	83	1.7596	75	0.9613	76	1.7239	76		
remove	1.7877	78	1.2633	75	1.2458	93	1.0700	76		
removeAll	1.8072	85	2.1359	77	1.9145	100	1.3920	91		
retainAll	3.2607	206	2.4092	200	2.2512	199	3.2222	193		
toArray	1.4789	86	1.3833	80	1.3776	79	1.6292	80		

			AttributeLis		CopyOn Write				RoleList		Role Unresolved List		Stack			
Methods	ArrayList		AttributeLis	ms	ArrayList		LinkedList		RoleList		Unresolved List	ms		ms	Vector	ms
add	0.9773		1.151		1.7839		1.8016	86	1.4801	76	1.1865	74	1.5659	76	1.5177	
addAll	1.3353				1.3586		1.1043	88	1.6661	76	1.8672	88	1.1015	88	1.7903	73
addAlli	1.7855		1.603		1.1789		1.7272	99	1.5980	81	1.2497	85	1.2962	72	1.6268	
addl	1.7125		1.384		1.6558		1.6404	96	1.2718	85	1.3124		1.5287	83	1.4554	86
clear	1.1284				1.7155		1.6497	74	1.6705	76	1.4304		1.6199	73	1.0574	71
contains	2.7568		2.4221		3,1768		3.1552	193	2.1751	162	2.4688	164	2.0128	166	2.1558	
containsAll	1.5993		1.805		2.1889	92	2.2887	118	1.3244	100	1.3930	96	1.2054	89	1.5091	87
get	2.0029				1.4918	77	2.0168	109	2.2110	81	1.6613	71	1.8956	86	1,4978	
indexOf	1.4447	76	2.032		1,5682	70	2.6289	101	1.5674	79	1.1944		1.8090	81	2.0788	75
iterateAll	2.0701	79	1.047	77	1.0103	73	2.6401	107	1.3605	85	1.7822		1.6036	81	1.1336	
iterator	1.4893	84	1.158	84	1.3922	72	1.7666	108	1.9760	73	1.3300	79	2.1895	84	1.6505	83
lastIndexOf	1.7750	99	1.766	98	2.0383	94	2.5019	127	1.8914	92	1.4211	95	1.2260	84	1.2296	96
listIterator	1.4457	76	1.619	84	1.3737	71	2.5003	106	1.3380	80	1.5176	85	1.6354	69	1.2746	81
listiteratori	1.7356	78	1.155	81	1.5160	77	2.1996	105	1.7588	79	1.0334	80	1.8799	85	1.7545	78
remove	1.1308	96	1.448	85	2.1946	162	1.6924	98	1.4560	84	1.1368	85	1.2663	96	1.4973	82
removeAll	8.0905	671	7.810	697	7.3237	666	8.3150	752	7.6148	692	7.9911	664	7.3824	654	7.1281	665
removei	1.9135	85	1.3534	92	2.2858	118	1.7174	100	1.6308	85	1.6369	89	1.5850	81	1.5486	90
retainAll	2.7037	193	2.784	200	2.6052	198	2.5982	205	3.0973	197	2.4172	200	2.7635	242	3.4019	245
set	0.9476	64	1.594	3 70	1.9669	110	2.0474	112	1.5249	76	1.2312	73	1.4938	75	1.4957	72
sublist	1.3108	76	1.602		1.4792	80	1.8457	98	1.4910	85	1.5117		1.7082	75	0.9414	75
toArray	1.6418	84	1.5024	84	2.0934	73	1.6739	106	1.5418	79	1.7455	83	1.5694	69	2.0213	80

	Concurrent		Concurrent					Linked			5. 18	Simple						Weak		
	HashMap SkipListMap			HashMap		Hashtable		HashMap		Properties		Bindings		TreeMap		UIDefaults		HashMap		
Methods 💽	J	ms		ms	J	ms		ms		ms	J	ms	J	ms	J	ms	J	ms	J	ms
clear	2.0276	94	2.2961	88	1.8395	104	1.5761	94	1.5025	97	2.0777	98	2.1401	106	1.6706	98	1.8143	105	1.9941	95
containsKey	2.3132	105	2.1693	123	2.1343	103	1.8582	94	1.8726	103	1.6018	107	1.8055	99	1.9452	100	2.3366	89	1.9675	108
containsValue	21.5611	2305	7.8032	643	8.3615	683	8.4957	765	6.1326	462	7.3755	692	7.9912	678	9.1771	847	7.9341	714	6.7072	562
entrySet	2.2878	93	2.2363	116	1.8531	108	2.1332	107	1.8362	113	1.7800	97	2.1557	102	2.1617	115	1.7087	105	1.4666	102
get	2.3106	103	1.9972	119	1.8120	102	1.4071	100	1.8252	116	1.7851	97	1.5359	100	2.2331	115	1.5252	89	1.7185	103
iterateAll	2.1041	96	1.8353	115	2.6673	100	1.5343	91	1.6462	111	1.6362	100	2.0472	116	1.9122	111	1.6574	95	1.7139	106
keySet	1.7287	95	2.4889	124	1.6813	114	2.2226	99	1.8328	103	1.4866	92	2.0630	106	2.1680	110	1.5547	99	1.8749	105
put	1.8591	104	2.2888	102	2.4628	92	1.3123	96	2.0338	108	1.7038	107	2.1646	102	1.4355	91	2.1204	93	2.5784	105
putAll	1.4147	95	2.2852	122	1.7564	100	1.5949	105	1.8608	113	1.3097	95	2.1461	112	1.8914	116	2.3094	87	2.0750	108
remove	1.8574	92	2.2131	105	1.9256	109	1.6067	97	2.2300	106	1.9660	98	2.2178	106	1.8133	101	1.6888	92	2.4103	103
values	1.8279	85	2.4690	116	2.5755	109	2.2266	94	2.0009	107	1.9120	111	2.0692	108	1.4467	105	1.6533	100	2.4628	111

SOFTWARE QUALITY SOFTWARE ENGINEERING

P INESCTED

SOFTWARE QUALITY SOFTWARE ENGINEERING

Wanna know more?

AWS PROJECT CYBER SECURITY

- Collaboration with amazon
- Formalize the security of AWS Key Management Service
- **Decentralized** system for protecting crypto keys of AWS users
 - Hardware Security Modules
 - Amazon operators
 - Front-end hosts

A machine-checked cryptographic proof of protocol security
 Largest machine-checked proof to date using EasyCrypt

EC-ZK PROJECT CYBER SECURITY

Collaboration with Research Program

ZKP: *prover* convinces a *verifier* that it knows a secret belonging to some relation

- Machine-checked proof of "MPC-in-the-Head" using EasyCrypt
 - modular construction to build ZKP for generic relations
 - used in modern quantum-secure signature schemes
- Verified implementation obtained via code synthesis
 - automatically extracted executable code
 - verified high-speed assembly operations

HADES PROJECT CYBER SECURITY

FCT (2018-2021)

Goals

- Secure, efficient, and scalable approach to building completely **decentralized systems** for society critical applications
- Build on emerging technologies for trusted execution environments:
 - $\circ \quad \text{Intel SGX} \\$
 - ARM TrustZone
- **Reducing** computational and communicational costs of expensive cryptographic protocols used today in secure **decentralized** systems
- A new toolbox of **hardware-backed** abstractions and new protocols for decentralized **storage** and processing applications

THEIA PROJECT CYBER SECURITY

Ongoing (2021-2023)

Goal: Develop and apply intelligent perception algorithms to support autonomous driving

Challenges (GDPR compliance)

- secure machine learning for connected vehicles
- secure inter-vehicle data communication
- secure in-vehicle data processing
- secure in-vehicle data storage

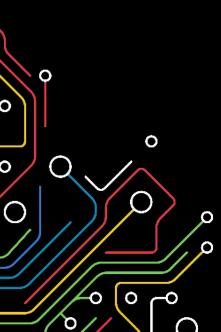
Other (non-THEIA) Automotive Partners

INCLUSIVE NON-AUTHORITATIVE DIGITAL IDENTITY

The project aims to create an effective and inclusive identification platform open to all citizens, in countries that do not have central identification systems (civil registration infrastructures).

The innovative nature of IDINA will help exploring the potential of **institutions and other agents** that work in the field, as **sources of reliable information** about citizens, with whom they have direct contact (non-governmental entities, for instance). In this sense, it will be possible to validate the data provided by the different entities about each citizen, and improve them throughout their life events.

Goals


IdINA PROJECT

CYBER SECURITY

- Design and implementation of a non-authoritative digital identity system filling the void stemming from a non-existent or incomplete State-managed legal identity system
- Inclusive solution enabling individuals to prove their identities to entities they regularly interact with, requiring no tech or low
- A stepping stone leading to a future full-fledge, State-managed legal identity authoritative system

INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

THANK YOU!

HASLab

Campus de Gualtar Universidade do Minho 4710-053 BRAGA

+351 253 604 440 haslab@inesctec.pt

www.inesctec.pt/en/centres/haslab

PORTUGAL

🛃 INESCTEC 🛛 🗗 🖬 🔽 🖸 🖸