
MAP-I: Doctoral Program in Informatics
2016-17 Edition

Proposal of a Curriculum Unit in Computing Paradigms

Software Testing

Ana Paiva

João Pascoal Faria
UPorto

Alcino Cunha
UMinho

April, 7, 2017

Abstract: This document describes a Ph.D. level course, corresponding to a curriculum unit credited with
5 ECTS. It corresponds to a joint UPorto-UMinho proposal for OPTI (option in technologies) in the joint
MAP-I doctoral program in Informatics. It is presented the programmatic component, the lecturing team,
and the plans for the coordination with curriculum units in other PhD programs.

A. Programmatic Component

1. Theme, Justification and Context

Motivation

Software is increasingly present in our daily life. The software controls 80% of the functions of military
aircraft, motor controls, TVs, mobile phones, etc., and it moves daily one billion dollars in the financial
market, and is crucial for several businesses. Thus, the quality of software is becoming increasingly
important. But assuring the quality of increasingly complex software systems is a challenging task. Failures
in software are all too common and have a huge economic impact. According to NSF, the economic impact
of inadequate software testing is estimated to represent 0.6% of the USA's GNP.

In the software industry, software testing typically consumes 30% to 50% of the development effort and
schedule. Yet, the quality of delivered software products is not satisfactory. Considering the typical defect
density of 1 to 7 defects/KLOC in delivered software products, typically with millions of lines of code, leads
to a number of defects in delivered products in the order of thousands of defects. Hence, it is of upmost
importance to improve testing efficiency and effectiveness, to reduce testing costs and improve product
quality, namely through test automation.

Software testing is recognized as a major knowledge area or subject of software engineering, both by the
IEEE’s Guide to the Software Engineering Body of Knowledge (SWEBOK) and the ACM Computing
Classification System.

2. Objectives and Learning Outcomes

This course aims to cover, both from the foundational and the methodological point of view, the concepts
and techniques for Software Testing.

The course is not intended as an introductory survey on Software Testing, but as an opportunity of
exposing students to cutting-edge research topics in this area, although presented in a coherent and
integrated way. It is placed at a similar level and covers overlapping material with advanced modules in
doctoral programs at leading academic institutions.

Upon successful completion of this curricular unit, students should be able:

• to recognize and explain the economic and social importance of software quality in general, and
testing in particular;

• to understand the benefits and challenges of automated software testing techniques, such as
mode-based testing or randomized testing;

• to understand the benefits and limitations of automated software test generation techniques;
• to identify test related measures (efficiency, effectiveness, coverage, rho, etc.);
• to understand the principles and techniques for test suite selection, minimization and

prioritization.

3. Course Contents

Our society is increasingly dependent on the correct functioning of software systems, so the software
industry should strive to deliver essentially defect free software in a cost-effective way, by using more
effective and efficient defect detection and prevention techniques than are in common use today. The
goal of this unit is to cover some of the most promising techniques in that direction, namely concerning
software testing. Testing is the main defect detection technique in software industry. Manual testing is
infeasible because of the ever-growing size and complexity of software systems, so the main focus in this
course will be placed in the study of test automation techniques, notably automatic test generation.

The course is organized in two units:

3.1 Software testing fundamentals

This unit will review basic concepts related to testing, namely:

 Test process;
 Test levels and test types;
 Test coverage analysis and code instrumentation;
 Advanced unit testing techniques;
 Test suite minimization and prioritization for regression testing;
 Test management;
 Metrics for assessing test quality.

3.2 Automated software testing

This is the core unit of the course, focusing on the principles and techniques for automated software
testing. A key topic to be addressed in this unit is model-based testing, namely the usage of formal
specification languages to build models of software to serve as oracles and model finding techniques to
automatically generate test cases.

More specifically, this unit will cover the following topics:

 Survey of automated testing techniques;
 Survey of model-based testing techniques (from patterns, algebraic specifications, state-based

specifications, scenario-based specifications, etc.);
 Automatic GUI testing;
 Test case generation: theory, techniques and tools;  
 Specifying formal models of software with Alloy to support model-based testing;
 Using model finders to automate test generation;
 Automatic randomized testing with QuickCheck-like techniques. 

4. Teaching Methods and Student Assessment

Studies show the need to consider software testing as a multidisciplinary activity that requires
systematization. This course will allow:

• learning the fundamental concepts and principles of software testing;
• knowing and understanding the solutions and proven practices to improve software testing

through exploration of examples and case studies;
• applying the knowledge gained by using and adapting known solutions for a particular problem in

an individual project.

No textbook adequately covers the course’s range of topics, so a diversity of bibliographic elements
(books, journals and conference proceedings) will be used.

Classes

The class meetings are meant to be conversational, and we encourage students to ask questions and make
comments. Consequently, the discussion may follow tangents to the prepared lecture, but they should be
fruitful, informative, and thought provoking. These classes are conducted by all the elements of the
lecturing team.

Panels and talks

Two panels or talks will be organized to complement the topics covered by the formal classes. These
panels or talks will involve both the lecturing team and possibly faculty members that are not formally
associated with this UC.

Readings

Each week, the students must read papers or some few supplemental materials provided, related to the
topics discussed in class. All reading assignments come from journals and conference proceedings. This
exposes many students to extensive readings from the research literature for the first time. To help them
with their reading, we require them to write a brief summary for each paper, and submit it electronically
before the next class. We also ask them to submit a list of questions about the readings, which we try to
work into the lecture if possible. Whenever applicable, students will also be encouraged to experiment
with the technologies mentioned in the reading materials. During the last few weeks of the course, we no
longer require reading summaries, to give students more time to focus on the project.

Individual research project

Whilst the goal of the readings is to develop a critical but shallow view over a broad range of topics
addressed in classes, the goal of the individual research project is to develop a more in depth
understanding on a software testing research topic, matching as much as possible each student interests,
as well as the lecturers’ areas of expertise. Projects are designed to combine a state of the art analyses
with an experimental assessment. Grading of individual research projects is based on an oral presentation
(for a more methodological project) or demonstration (for a more technological project), and a final
written report. No two students can work on the same project. A few weeks into the course, descriptions
of possible projects are handed out to students, who are also encouraged to propose projects of their
own. Once students complete their project, they must demonstrate it, make an oral presentation, and
submit a final written report.

5. Basic Bibliographic References

• Ilene Burnstein. Practical software testing, Springer, 2003.
• Aditya P. Mathur. Foundations of software testing, Pearson Education India, 2008.
• M. Utting, M. Legeard. Practical Model-Based Testing: A Tools Approach, Morgan Kaufmann,

2007.
• R. M. Poston. Automating Specification-based Software Testing, IEEE Press, 1996.
• Software Verification and Analysis: An Integrated, Hands-On Approach, by Janusz Laski and

William Stanley (Nov 5, 2010).
• Christof Ebert, Reiner Dumke. Software Measurement: Establish - Extract - Evaluate – Execute.

Springer-Verlag, 2007.
• Daniel Jackson. Software Abstractions – Logic, Language, and Analysis (revised edition). MIT Press,

2011.
• Andreas Zeller.Why Programs Fail: A Guide to Systematic Debugging. Elsvier, 2009.

B. Lecturing Team

1. Team Presentation

This course is supported by a team involving researchers from the University of Porto (Ana Paiva and João
Pascoal Faria) and the University of Minho (Alcino Cunha).

All team members are working, and have worked actively in the past few years, on topics that are directly
related to the subjects covered by this course, as detailed below.

2. Coordinator

The coordinator of the unit is Ana Paiva.

3. Short Presentation of Team Members

In the sequel we introduce a brief presentation of each team member, which includes, for each of them,
up to 5 key publications related to the scientific area in which this course is proposed. All CVs are supplied
in separate PDF documents.

Ana Paiva is assistant Professor at the Informatics Engineering Department of the Faculty of Engineering
of University of Porto (FEUP) where she works since 1999. She teaches subjects like Software Testing,
Formal Methods and Software Engineering, among others. She belongs to the group on Software
Engineering (softeng.fe.up.pt) which gathers researchers and post graduate students with common
interests in software engineering. She has a PhD in Electrical and Computer Engineering from FEUP with
a thesis titled "Automated Specification Based Testing of Graphical User Interfaces". Her expertise is on
the implementation and automation of the model based testing process. She has been developing
research work in collaboration with Foundation of Software Engineering research group within Microsoft
Research where she had the opportunity to extend Microsoft's model-based testing tool, Spec Explorer,
for GUI testing. She was a member of the CYTED network on software verification and validation (REVVIS),
she is vice-president of the PSTQB (Portuguese Software Testing Qualification Board) board
(www.pstqb.pt), member of the Council of the Department of Informatics Engineering, and member of
the Council of Representatives of FEUP.

Key Publications:

• Pattern-based GUI testing: Bridging the gap between design and quality assurance in Journal of
Software: Testing, Verification and Reliability (STVR), Rodrigo M.L.M. Moreira, Ana C.R. Paiva,
Miguel Nabuco, Atif Memon, 2 March 2017, DOI: 10.1002/stvr.1629.

• Multidimensional test coverage analysis: PARADIGM-COV tool in Cluster Computing Journal, Ana
C.R. Paiva, Liliana Vilela, 16 January 2017, DOI: 10.1007/s10586-017-0728-4.

• Faria, J. P., & Paiva, A. C. R. (2014). A Toolset for Conformance Testing against UML Sequence
Diagrams based on Event-Driven Colored Petri Nets. International Journal on Software Tools for
Technology Transfer, December 2014, 1-20. doi: 10.1007/s10009-014-0354-x

• Moreira, R. M., & Paiva, A. C. (2014). PBGT Tool: An Integrated Modeling and Testing Environment
for Pattern-based GUI Testing. Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering (ASE'14) (pp. 863-866). Vasteras, Sweden: ACM.
doi:10.1145/2642937.2648618

• Moreira, R. M., Paiva, A. C., & Memon, A. (2013). A pattern-based approach for GUI modeling and
testing. IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), (pp. 288-
297). doi:10.1109/ISSRE.2013.6698881

João Pascoal de Faria is associate professor at the Department of Informatics Engineering of Faculty of
Engineering of University of Porto (FEUP) and researcher at INESC TEC. He his the president of the Sectorial
Commission for the Quality in Information and Communication Technologies (CS/03) in the scope of the

Portuguese Quality Institute (IPQ). In the past, he also worked with several software companies
(Novabase, Sidereus, and Medidata), and was co-founder of two other (Qualisoft and Strongstep). He has
more than 20 years of experience in teaching, research and consultancy in several software engineering
areas. He is the main author of a rapid application development tool (SAGA), based on domain specific
languages, that recently completed 25 years of continuous market presence and evolution. He is currently
involved in research projects and supervisions in the areas of model-based testing, software process
improvement, and model-driven development.

Key Publications:

• Lima, B., & Faria, J. P. (2015). Automated testing of distributed and heterogeneous systems based
on UML sequence diagrams. Communications in Computer and Information Science , vol. 586, pp.
380-396, Springer Verlag, February 2016

• Raza, M., & Faria, J. P. (2015). A model for analyzing performance problems and root causes in
the Personal Software Process. Journal of Software: Evolution and Process, vol. 28, Issue: 4, pp
254-271, John Wiley & Sons, April 2016 (first online: 19 November 2015). doi: 10.1002/smr.1759

• Faria, J. P., & Paiva, A. C. R. (2014). A Toolset for Conformance Testing against UML Sequence
Diagrams based on Event-Driven Colored Petri Nets. International Journal on Software Tools for
Technology Transfer, December 2014, 1-20. doi: 10.1007/s10009-014-0354-x

• Faria, J. P., Lima, B., Sousa, T. B., & Martins, A. (2014). A Testing and Certification Methodology
for an Open Ambient-Assisted Living Ecosystem. International Journal of E-Health and Medical
Communications, Volume 5, Issue 4, 90-107. doi: 10.4018/ijehmc.2014100106

• Cruz, A. M. R., & Faria, J. P. (2010). A Metamodel-based Approach For Automatic User Interface
Generation. In D. C. Petriu, N. Rouquette, & Ø. Haugen (Eds.), Lecture Notes in Computer Science:
Vol. 6394. MODELS’10 Proceedings of the 13th International Conference on Model Driven
Engineering Languages and Systems (pp. 256-270), Berlin, Germany: Springer-Verlag.
doi:10.1007/978-3-642-16145-2_18 (best paper award)

Alcino Cunha is assistant professor at the Department of Informatics of Universidade do Minho, and
member of the Software Engineering research group of the High-Assurance Software Laboratory of INESC
TEC. In recent years, his research is focused on the topic of automated software engineering, namely
developing new techniques and tools for model repair and (bidirectional) transformation, scenario
exploration, model checking, and for the integration of formal specification and analysis techniques,
namely Alloy, in the standard MDA software design methodology. Related to these topics, he has
collaborated with several international research teams, namely the Software Design Group at MIT, the
group that developed the Alloy formal modeling language, or the Modeling and Information Processing
group at ONERA, the French Aerospace Lab. Since 2007 he has also taught a course on formal specification
and analysis with Alloy at the informatics master degree at Universidade do Minho.

Key publications:

 Alcino Cunha, Ana Gabriela Garis, Daniel Riesco: Translating between Alloy specifications and UML
class diagrams annotated with OCL. Software and System Modeling 14(1): 5-25 (2015)

 Nuno Macedo, Alcino Cunha, Tiago Guimarães: Exploring Scenario Exploration. FASE 2015: 301-
315

 Alcino Cunha, Nuno Macedo, Tiago Guimarães: Target Oriented Relational Model Finding. FASE
2014: 17-31

 Nuno Macedo, Alcino Cunha: Implementing QVT-R Bidirectional Model Transformations Using
Alloy. FASE 2013: 297-311

 Nuno Macedo, Tiago Guimarães, Alcino Cunha: Model repair and transformation with Echo. ASE
2013: 694-697

