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Background	
  

The assembly of all PPIs from one organism is called interactome, which can be modeled as an 
undirected graph, where the nodes represent proteins and the edges represent physical 
interactions. The representation and analysis of those graphs will allow the clarification of the 
pathogenesis mechanisms of various diseases and provide support in the establishment of 
potential means to discover new therapeutic agents, diagnosis and screening tools (1, 2). 

The experimental techniques designed for PPI determination range from low throughput with 
high accuracy, to high-throughput with significantly lower accuracy. Although these approaches 
have successfully identified vast numbers of PPIs, a previous study (3) reports that 
approximately 70% of the identified interactions are false-positives. Moreover, the price and 
time required to perform experimental analysis of a species interactome makes it unfeasible. 

To overcome these drawbacks, a number of computational approaches to predict PPI have been 
explored. One common approach consists in using text mining to extract known PPIs from the 
biomedical literature (4). Bock and Gough (5) applied Support Vector Machines (SVM) to 
predicted PPI based only on the protein sequence. Nanni et al. (6) added the multiple classifier 
system (MCS) to improve the SVM-based methods, while Guo et al. (7) adopted autocovariance 
(AC) transformation to consider the neighborhood effect. Rajasekaran et al. (8) employed 
minimotifs to improve sequence-based prediction results. To predict PPI using genomic data, 
Najafabadi and Salavati (9) applied a näive Bayesian network, while Lu et al. (10) focused on 
protein structures, proposing a threading algorithm. 

As some PPIs occur specifically between domains of their interacting counterparts, Sprinzak 
and Margalit (11) applied a method to predict PPI based on domain-domain interactions (DDI), 
using a maximum likelihood estimator (MLE). Chen and Liu (12), improved the DDI-based PPI 
prediction results using a MCS. Maetschke et al. (13) applied Gene Ontology (GO) (14) 
annotation to predict PPI, combining machine learning with semantic similarity measures. 

Despite giving undeniable insights about PPI networks, the aforementioned methods only 
predict intra-species PPI. Dyer et al. (15) employed a DDI-based approach, adapting the MLE 
algorithm (11), while the approach of Davis et al. (16) was based in the threading method (10), 
requiring resolved protein structures for comparative modeling. Lastly, a method combining 
multiple data sources was developed by Tastan et al. (17), which used random forest as MCS. 
(15-19). Nevertheless, these techniques are not successful enough in inter-species PPI 
prediction. 

Objectives	
  

The main goal of this project is to fully comprehend and elucidate the oral inter-species PPI 
network. In order to achieve this aim, the following objectives have been outlined: 

1. Review of the state of the art 

2. Develop a PPI prediction model  

3. Design and reconstruct a complete PPI network of the oral cavity 

4. Explore and analyze the PPI network using network visualization tools 



5. Evaluate the performance of the prediction model under real scenarios 

6. Construct a bioinformatics platform to access PPI data  

Thesis	
  planning	
  

The biological processes occurring within a cell are performed, directly or indirectly, via a 
pathway of interacting proteins. For instance, PPIs play key roles in signaling and metabolic 
pathways, cellular structure scaffolding, and protein transport. Also, while being able to provide 
a comprehensive view of the interaction structure of an organism’s proteome, PPIs can also 
offer data regarding specific interactions. This is particularly interesting, since it is well 
accepted that the disruption of PPI interfaces may result in the development of various disease 
states. 

Even though there have been several efforts to predict PPI, none of them provides a solid and 
reliable prediction model. Such occurs due to a number of factors that influence the accuracy of 
the approaches. For instance, the absence of gold standard datasets to be used as training data 
and to evaluate system performance, the absence of literature compiling non-interacting protein 
pairs, the discontinuation of tools and databases, and the lack of complete genomic, proteomic 
and structural annotations for several organisms. Nevertheless, experimental methods cannot be 
considered a viable option, as they are very expensive and time-consuming, only give insight 
about a fraction of the total PPI network, and the most commonly used techniques retrieve a 
great number of false-positives, with the possibility of overlooking true-positives (3). 
Conversely, computational approaches grant a rapid and low-cost alternative to experimental 
methods. 

The aim of this proposal is to overcome such obstacles in a way that allows accurate prediction 
of inter-species PPI, particularly within the oral cavity. The most significant methods developed 
in regard of this issue have been described in the state of the art. Nonetheless, it is clear that 
each method has its limitations. Therefore, we believe that the key to solve this issue involves 
the combination of multiple complementary approaches. 

The approach to be explored consists in an ensemble of machine learning algorithms, joined 
with a multiple classifier system, as it is proven to be more accurate than an excellent single 
classifier. These features will then be assigned to an original prediction model, which combines 
DDI and protein sequence analysis, being the latter linked to an autocorrelation descriptor in 
order to take the amino acid neighborhood effect into account. Analysis of semantic similarities 
using GO will also be employed in such combination. Once the oral PPI network is established, 
it will be explored using network exploration tools (e.g. Cytoscape – available at 
http://www.cytoscape.org/). In the absence of a gold standard, we believe that the use of 
experimentally determined PPI data will suffice to evaluate the method. To sum up, we will 
develop a web tool where all the data will be readily available to the biomedical community. 
Below, we present an outline describing in more detail the highlighted milestones: 

Prediction	
  model	
  of	
  the	
  human	
  oral	
  interactome	
  

The first task consists in developing and tuning of the PPI prediction model. Our aim is to 
combine a few complementary methods in order to diminish limitations of the individual 
approaches. One of these approaches will consist in the analysis of DDIs, since there is a great 



number of PPIs that occurs exclusively via specific domains pairs. The analysis of protein 
sequence making use of machine learning algorithms returned great results. Also, when in 
combination with a descriptor, such as Moran’s autocorrelation descriptor, the prediction model 
will be able to take into account the amino acid neighboring effects and correlate two protein 
sequences regarding their physicochemical properties. The emerging tuned PPI prediction based 
on GO semantic similarity is also a very solid approach. For that matter we intend to use 
inducers, combined with a MCS. We believe this potential triad will yield highly significant 
results. 

Network	
  reconstruction,	
  validation	
  and	
  analysis	
  

The developed PPI prediction model will then be used to obtain the crude oral PPI network. 
This network will then be reconstructed by pruning edges based on node degree, a technique 
less computer intensive than testing critical edges. As for validation, we intend to use cross-
validation to assess data consistency and Receiver Operating Characteristic (ROC) curves to 
assess performance. ROC curves are especially helpful as they are sensitive to node degree 
effects. Analysis of the PPI networks will be performed using Cytoscape. 

Performance	
  assessment	
  and	
  experimental	
  validation	
  

The absence of a gold standard encumbers the evaluation of the system performance. Therefore, 
it is crucial to build datasets consisting of high-quality curated PPI data from scientific 
literature. These data are found in online repositories, such as IntAct 
(http://www.ebi.ac.uk/intact/), MIPS (http://mips.helmholtz-muenchen.de/proj/ppi/), HPRD 
(http://www.hprd.org/), and STRING (http://string-db.org/). An unbiased negative dataset is 
required as well. The use of experimentally determined PPI data combined with the unbiased 
dataset will allow to promptly estimate performance measures, suchlike precision, recall, 
specificity, and accuracy.  

Development	
  of	
  a	
  web-­‐based	
  bioinformatics	
  tool	
  

Based on the results of the previous tasks, we plan to develop a web tool where the users can 
retrieve specific data from the whole oral PPI network. We will adopt a complex search system 
based in both UniProt (http://www.uniprot.org/) accession numbers and their synonyms. The 
end-user will be able to search by (1) single or multiple proteins, which retrieves all PPIs where 
the given protein is involved and the respective place inside the network, (2) multiple proteins, 
which retrieves the list of PPIs occurring in the given protein set, and by (3) GO annotation, 
yielding all the proteins in the same GO term and the respective PPIs. 

Final	
  statement	
  

This proposal presents an innovative approach in PPI, with potential to improve the current 
state-of-the-art. The data resulting from this work will provide undeniable support for the 
scientific community, namely in the research of oral host-pathogen interactions, pathogenesis of 
oral ailments, drug de novo synthesis, and drug reuse for new targets. Also, it will enable the 
development of original diagnosis and screening tools. 
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