
MAP-I
Programa Doutoral em Informática

Source Code Analysis and
Manipulation

Unidade Curricular em Paradigmas da Computação
Paradigms of Computation

(UCPC)

UMinho, FEUP

7 de Maio de 2011

Resumo

This document describes a Ph.D. level course, corresponding to a Curri-
culum Unit credited with 5 ECTS. It corresponds to a joint UMinho-FEUP
proposal for UCPC (Paradigms of Computation) in the joint MAP-i doc-
toral program in Informatics, organized by three Portuguese Universities
(Minho, Aveiro, and Porto).

LECTURING TEAM

UMinho: João P. Fernandes, João Saraiva
FEUP: João Cardoso, Rui Maranhão

Coordinator: João Saraiva

1



A. Programmatic Component

1. Theme, Justification and Context

Motivation

This course concerns the analysis and/or manipulation of the source code of com-
puter systems. While much attention in the wider software engineering com-
munity is properly directed towards other aspects of systems development and
evolution, such as specification, design and requirements engineering, it is the
source code that contains the only precise description of the behaviour of the
system. Thus, the analysis and manipulation of source code remains a pressing
concern and an active area of research.

In this course, we will use the term source code, to mean any description of a
software system, being it a fully executable system or a non-executable one.
Thus, it includes machine code, very high level language-based program spe-
cifications (for example, attribute grammars), general purpose programming
languages (ie, Java, Scala, C, etc), domain specific languages (ie, MatLab, SQL,
VHDL, etc), document programming languages (like, HTML/XML, LATEX, etc),
end-user programming environments (like, Spreadsheet systems), etc. The
term analysis is taken to mean any automated or semi automated procedure
which takes source code and yields insight into its meaning. The term mani-
pulation is taken to mean any automated or semi-automated procedure which
takes and returns source code.

This course encompasses many research areas, namely:

1. Program Refactoring: refactoring is a controlled transformation technique
for improving the design of an existing code base. Its essence is applying
a series of small behavior-preserving transformations.

2. Program Specialization/Partial Evaluation: Partial evaluation is a transfor-
mation technique in which a program is specialized to a part of the in-
put that is known statically (at specialization time), where the specialized
program may be much faster than the general one.

3. Program Optimization: A program optimization is a transformation that
improves the run-time and/or space performance of a program. Exam-
ples of optimization are program fusion, inlining, constant propagation,
common-subexpression elimination, and dead code elimination.

4. Program Testing: Testing is an important process that is performed to sup-
port quality assurance. These activities consist of designing test cases,
executing the software with those test cases, and examining the results
produced by those executions.

2



5. Program Slicing: program slicing is the computation of the set of source
code program statements, the source program slice, that may affect the
values at some point of interest.

6. Program Debugging and Fault Localization: Program debugging is a metho-
dical process of finding and reducing the number of defects (or faults) in
software. Automatic fault localization techniques aid developers/testers
to pinpoint the root cause of software faults, thereby reducing the debug-
ging effort.

7. Software Metrics: Software metrics are used to indicate the complexity of
a program. Software metrics measure measures program sizes, cohesion,
number of linearly independent paths through a program’s source code,
etc.

8. Document Analysis and Transformation: Techniques for analysis and trans-
formation of documents, described via Extensible Markup Languages
like XML, plays an important role in the exchange of a wide variety of
such documents on the Web.

9. Generative Programming: The purpose of generative programming is to re-
place manual search, transformation/adaptation, and assembly of com-
ponents with the automatic generation of needed components on de-
mand.

10. Reverse Engineering: The goal of reverse engineering is to infer a high-
level specification (like, for example, the program data flow, the GUI
behavioural model of an interactive application, the program documen-
tation, etc) from a low-level program.

The course will emphasize the study of the analysis and manipulation techni-
ques themselves, namely:

1. Generalized Top-Down and Bottom-Up Parsing Techniques.

2. Strategic Programming.

3. Bidirectional Transformations.

4. Program Calculation.

5. Attribute Grammars.

6. Techniques for Domain Specific Language Embedding.

7. Fault Localization techniques.

8. Program Transformations for embedding Systems.

3



It is our goal to address the research challenges in the above mentioned rese-
arch areas, presenting the state-of-the-art in these fields. Moreover, we will in-
vite several well-known researchers to give presentations of their work within
the frame of this course (see section Invited Talks).

Finally, we plan to submit the SCAM course for recognition by the CMU Doc-
toral Programme.

Course Context

ACM Computing Classification System subjects covered:

• D. Software / D.2 Software Engineering / D.2.1 Requirements/Specifications

• D. Software / D.2 Software Engineering / D.2.4 Software/Program Veri-
fication

• D. Software / D.2 Software Engineering / D.2.5 Testing and Debugging

• D. Software / D.3 Programming Languages / D.3.3 Language Constructs
and Features

• D. Software / D.3 Programming Languages / D.3.4 Processors

2. Objectives and Learning Outcomes

The goal of this advanced course is to introduce the foundations of program
analysis and transformation in software engineering.

We will present modern approaches to perform program analysis, namely the
use of advanced generic parsing techniques, source code software metrics,
source level testing techniques, and fault localization techniques. We will also
present advanced techniques for program transformation, like the use of stra-
tegic programming, bidirectional program transformation techniques, modern
attribute grammar extensions for program transformation, and the use of pro-
gram calculational approaches to define such transformations.

We will study the use of these approaches not only for general purpose langua-
ges, but also for domain specific languages and document specification forma-
lisms. Furthermore, we will discuss source code analysis and transformation
techniques for both general and embedded computing.

At the end of this course, PhD students should be able

• To understand context-free and attribute grammars, and to specify power-
ful analysis and transformation source code systems within these two
formalisms.

4



• To use source level software analysis techniques to extract high level abs-
tract models from a (low level) software description, and to assess its
quality;

• To use program refactoring and program slicing techniques to better un-
derstand low and high level source code programs;

• To identify hot-spots and the possible code optimizations and transfor-
mations that can be applied;

• To understand the impact of code transformations and optimizations in
execution time, and in memory and power/energy consumption;

• to recognize mathematical properties in software and to transform and
optimize such "naively"written programs by calculation;

• to advocate (semi-)automated software debugging techniques to quickly
identify faulty software components;

• to be able to create test suites that are particularly suitable for automated
software debugging;

• To acquire knowledge about embedded computing optimizations;

• To define, analyse and transform documents;

• To understand the challenges on developing tools to perform sophistica-
ted code analysis, transformations and optimizations;

3. Course Structure and Contents

This course is structured in five units: the first two present the foundations of
source code analysis and transformations. The next unit will present a formal
setting where such analysis and transformations are defined. In unit 4, we will
present analysis techniques for debugging and fault localization in software
systems. Finally, in unit 5, we will study analysis and transformations of source
code in the context of embedded computing.

Next, we present the content of each of these units.

1. Source Code: Analysis

In general, software analysis extracts arbitrary properties of software source
code. In this unit we will study the foundations of analysis of source
code. We will present generic language technologies to analyse source

5



code. These techniques are language paradigm and domain indepen-
dent: they can be applied and reused to analyse source code defined
in different programming languages (C, Haskell, XML), paradigms (OO,
Functional, Imperative), and domains (general purpose or domain speci-
fic).

We start by studying powerful generic parsing techniques to rapidly de-
fine a parser/syntactic analyser for source code. We will also present
the attribute grammar formalism in order to define a semantic analyser
for programming languages. Domain specific Languages (DSL) will be
used as case studies. Moreover, we will study the embedding of DSLs
in general purpose languages. The languages for grammar specification
(context-free and attribute grammars) will be used to introduced Embed-
ded DSLs.

Software metrics are a special kind of analysis focused on the structure
of the source code. Typical metrics report provide details on individual
modules and summaries for subsystems. Such metrics are widely used
to judge the quality of source code, enabling a software organization to
more effectively focus its attention on the lower-quality portions of their
portfolio. Software metrics are necessarily computed on the structure of
the source code. This means metrics must be extracted from a parse of
the program’s source code.

We will also study software reverse engineering as yet another analysis
technique which has two goals: first, to identify the system’s components
and their interrelationships; and, second to create representations of the
system at a higher level of abstraction.

Finally, we will study program testing as an important analysis techni-
que: reverse engineering techniques are used to extract a model of the
underlying source code program, and test cases are (automatically) ge-
nerated for the model. Model-based testing techniques are presented to
check whether the model conforms with the program’s implementation.

This unit focuses on the following topics:

• Generalized Parsing: Top-Down Generalized Parsing, Functional
Parser Combinators, Bottom-Up Generalized Parsing, Disambigua-
tion Filters, Scannerless Parsing.

• Domain Specific Languages: What is a DSL? When and how to de-
fine DSLs? How to implement DSLs? Building Domain Specific
Processors for DSLs versus Embedded DSLs. A Parser Combinator
Library as an embedding of BNF in a general purpose language.

• Attribute Grammars (AG) and their Extensions: Definition and im-
plementation. Implementation of AGs in a strict/static and dyna-
mic/lazy programming Language. Program analysis via Attribute
Grammars. AG-based Program transformation via the Higher-Order

6



AG extension. The embedding of AG specification language (ie, a
DSL) in Haskell.

• Source Level Software Metrics: Metrics Catalogue (from very simple
Source Lines of Code to more complex measures such as Cycloma-
tic Complexity measurements). Computing metrics for GPLs and
DSLs. Using metrics to detect bad smells. Assessing software qua-
lity via metrics.

• Reverse Engineering: software architecture extraction. Program mo-
del extraction (GUI behavioural models, spreadsheet business logic,
program dependency graph). Document generation.

• Source Level Software Testing: Test case generation. Model-based
testing. Testing automation. Performance testing for embedding
systems.

2. Source Code: Manipulation

Program Analysis reduces a program to one aspect such as its control-
flow. Thus, analysis can be considered a transformation to a sub-language.
In this unit we will present generic techniques and tools for program
transformation.

One of the aims of a general framework for program transformation is
to define transformations that are reusable across as wide a range of lan-
guages as possible. Thus, we present strategic programming as a generic
language-based technique for source code software transformation. We
will also study bidirectional program transformations. A Bidirectional
transformation defines two program transformations: one from a source
program to a target program, and a second one from the target to the
source program. A bidirectional transformation system allows users to
edit/update both the source and the target programs: the two programs
(source and target) are automatically synchronized after the user update.

In this course we present program refactoring as an important source
code transformation: a technique for changing the structure of a program
without changing its behaviour/semantics.

We will also study partial evaluation or program specialization as an im-
portant program optimization technique: program are specialized to a
part of the input that is known statically. Two real examples will be stu-
died: the specialization of the acceptance functions for non-deterministic
finite automata and for table-driven top-down parsers.

In order to analyse/understand large software systems, it is convenient
to focus on smaller parts of the system. Program slicing is a technique
that allows us to slice out fragments of a larger software system that de-
serve our attention. We will present slicing techniques (backward and
forward slicings) as algorithms that work on source code program de-
pendency graphs.

7



Finally, we will present document analysis and transformation techni-
ques based on the widely used extensible markup languages. We will
relate these document techniques to context-free grammars and strategic
programming.

The unit is structured into the following topics:

• Strategic Programming: Foundations. Rewriting systems. Strategic
Combinators. Strategies across programming paradigms: functio-
nal, OO and imperative incarnations. Strategic-based source code
transformation systems: TOM and RASCAL systems.

• Bidirectional Program Transformation: Backward and forward trans-
formations. Deriving backward from forward transformation defi-
nition. Bidirectional attribute grammars.

• Program Refactoring: Source code refactorings. Refactorings catalo-
gues. Bad smell elimination. Tool support for refactoring (The Hare
refactorer)

• Program Specialization/Partial Evaluation: Foundations. Futamura
projections. Partial evaluation as an optimization transformation.
Study of two case studies.

• Program Slicing: Program dependency graph. Static versus dyna-
mic slicing. Slicing Criteria. Forward and backward slicing, and
chopping. Source code slicing systems: the CodeSurfer and the Gui-
Surfer systems.

• Document Definition and Transformation: Extensible markup lan-
guages. The XML Language. XML schema. XML Schema versus
Context-Free Grammars. Document Transformation via XSLT. XSLT
versus Strategic Combinators.

3. Rigorous Approaches to Program Analysis and Transformations

As software becomes more and more complex, it is more and more im-
portant to structure it well. Well-structured software is easy to write,
easy to debug, and provides a collection of modules that can be re-used
to reduce future programming costs. Conventional languages place con-
ceptual limits on the way problems can be modularised. Functional lan-
guages push those limits back.

In this module, we show that two features of functional languages in par-
ticular, higher-order functions and lazy evaluation, can contribute greatly
to modularity.

Furthermore, functional programs are “referentially transparent”, which
means that an expression can be replaced by its value without affecting
the whole program. This freedom helps make functional programs more
tractable mathematically than their conventional counterparts.

8



In this module, we will explore the mathematical properties of functio-
nal programs, and we will analyse and transformation such programs in
a way that the correctness of the transformations can be formally esta-
blished.

In this unit, we will focus on the following topics:

• Recursion Patterns: Definition and Identification in the source code
of a (functional) program.

• Transforming functional programs by Calculation.

• Improving the efficiency of programs using Fusion Rules.

• Introducing Circular Programming, exploring their nice properties
in program transformations.

4. Program Debugging and Fault Localization

Software reliability/quality can generally be improved through exten-
sive testing and debugging, but this is often in conflict with market con-
ditions: software cannot be tested exhaustively, and of the bugs that are
found, only those with the highest impact on the user-perceived relia-
bility can be solved before the release. In this typical scenario, testing
reveals more bugs than can be solved, and debugging is the bottleneck
for improving software reliability/quality. Automated debugging tech-
niques can help to reduce this bottleneck. These techniques give a di-
agnosis for failures that are detected during the execution of a program,
which can help programmers to locate their root causes, and thus to re-
duce the effort spent on manual debugging.

The unit is structured into the following topics:

• Devise proper test suites which help in the subsequent debugging
phase.

• (Semi-) automatic fault localization.

• Introducing to test sequencing for improving the time spent on de-
bugging.

5. Source Code Analysis and Transformations for Embedded Computing

Code transformations are of paramount importance in embedded com-
puting. They may reduce execution time, power dissipation, and/or
energy consumption.

This module will focus on the analysis and identification of code opti-
mization techniques best suited to achieve reductions related to those
aspects on typical applications. As case studies, we will evaluate code
transformations with applications running on mobile devices.

9



Finally, challenges on the development of code transformation tools for
embedded systems will be presented and possible solutions discussed.

• Embedded Computing Idiosyncrasies.

• Computing Engines used in Embedded Systems.

• Profiling, Performance Analysis and Amdahl’s Law.

• Introduction to Power Dissipation and Energy Consumption.

• Source Code Transformations and Optimizations.

• Challenges regarding Tools for Code Transformations: Examples
and Case Studies.

4. Teaching Methods and Student Assessment

This course will consist of theoretical and practical components.

In the theoretical component, a set of seminars will be delivered by the lectu-
ring team, invited speakers, and the students themselves.

• The basic and advanced contents of this course will be presented by the
lecturing team; We will be using the proceedings of the series of Ph.D.
summer schools on Generative and Transformation Techniques in Software
Engineering (GTTSE) as the reading material for the classes (see Biblio-
graphy section). The proceedings of the first three editions include se-
veral long and short tutorials (concretely 22 long tutorials and 19 short
tutorials), written by well-known researchers, which cover most of the
topics in the course. The members of the lecturing team are involved in
the series of GTTSE Ph.D. schools as proceedings editors, local organizers
and tutorialists.

• Advanced contents on specific topics will be presented by visiting rese-
archers (see section Invited Tutorials)

• Students will give one presentation of proposed research papers. The
presentation will follow a standard conference talk model. The research
papers will be proposed by the lecturing team, and they consist of a se-
lection of recently published papers in conferences and journals in the
SCAM area (namely, PLDI, TOPLAS, SCAM, GPCE, and SLE).

The practical component consists of the development of an individual project.
This project requires the use of a specific software system for the analysis and
transformation of source code. The students are also expected to give a presen-
tation, in the form of a tool demo, of the software system they decide to use.
They are also supposed to write a report of the project as a research paper.

10



Invited Tutorials

We plan to have a series of tutorials given by researchers working in the field
of SCAM. In the next scholar year we plan to have the following tutorials:

• Jácome Cunha is a post-doc fellow at Minho University and Oregon State
University (USA), working with Prof. Dr. João Saraiva and Prof. Dr.
Martin Erwig. His research is mainly focused on software engineering
and in improving the use of spreadsheets through characteristics from
modern programming languages and software engineering techniques.
Jácome will give a tutorial on “spreadsheet reverse engineering”.

• Eric Van Wyk is an Associate Professor at Univ. Minnesota, USA. Prof.
Eric Van Wyk is visiting UMinho in the scholar year 2010-2011 (from Oc-
tober 2010 till June 2011) in the context of a sabbatical leave. As one result
of this sabattical, we have submitted a research project proposal (under
evaluation), where we plan a visit of Eric to UMinho. In this context, Eric
will give a tutorial in the unit "Source Code: Transformations".

• Alberto Pardo is an Associate Professor at the Computing Science De-
partment (InCo) of the Engineering School, Universidad de la República,
Montevideo, Uruguay and we will be visiting UMinho as consultant of
the FCT funded SSaaPP research project. Like in the scholar year 2010-
2011 of SCAM, he will give a tutorial in the unit "Rigorous Approaches to
Program Analysis and Transformations", being this a research area that
Alberto Pardo has already significantly contributed to, including with
some of the lecturing team members.

• Janis Voigltlander is a Professor at Bonn University, Germany, conduc-
ting research on parametricity results (also called free theorems) for poly-
morphically typed languages. These results are used, for example, to es-
tablish formally the correctness of program transformations. In the con-
text of the project Strictification of Circular Programs, (FCT/DAAD bilate-
ral agreement 2010-2011), one visit is scheduled to UMinho, where Janis
Voigtlander will give a tutorial in the unit "Rigorous Approaches to Pro-
gram Analysis and Transformations", like in the previous instance of this
course..

• Ali Mesbah is a postdoctoral researcher at Delft University of Technology,
the Netherlands. His research is about automatic testing of web systems.
He has recently been awarded with the distinguished paper award at
ICSE’09.

Student Assessment

During the this course the students will have to give a research talk, to develop
a research project, to give a tool demo talk presenting the software system they

11



adopt, and finally to write the project report as a scientific paper. Thus, the
student will be assessed through these four activities.

5. Basic Bibliographic References

• Generative and Transformation Techniques in Software Engineering I, II, III,
Ralf Laemmel, Joost Visser and João Saraiva editors, volumes 4143 and
5235 of LNCS Tutorials, proceedings of the summer schools GTTSE’05,
GTTSE’07 and GTTSE’09, Springer.

• Compilation Techniques for Reconfigurable Architectures, João Cardoso and
Pedro Diniz, Springer Publishing Company, Incorporated, 2008.

• Software Product Lines: Practices and Patterns, Paul Clements and Linda
Northrop, Addison-Wesley, August 2001.

• Generative Programming - Methods, Tools, and Applications, Krzysztof Czar-
necki and Ulrich W. Eisenecker, Addison-Wesley, June 2000.

• Partial Evaluation and Automatic Program Generation, N.D. Jones, C.K. Go-
mard, and P. Sestoft, Prentice Hall International, June 1993

• The Fun of Programming , Jeremy Gibbons and Oege de Moor, editors.
Cornerstones in Computing. Palgrave, 2003.

• Domain Specific Languages, Martin Fowler, Addison-Wesley Professional,
September, 2010 (Estimated), already available at safari books online)

• Refactoring: Improving the Design of Existing Code, Martin Fowler, Kent
Beck, John Brant, William Opdyke, Don Roberts, Addison-Wesley, 2000.

12



B. Lecturing Team

1. Team Presentation

This course is supported by a team involving researchers form both the Univer-
sity of Minho, School of Engineering (João Paulo Fernandes, and João Saraiva),
and the University of Porto, FEUP (João Cardoso, and Rui Maranhão).

All team members are working, and have worked actively in the past few ye-
ars, on topics that are directly related to the subjects covered by this course, as
detailed below.

2. Coordinator

The coordinator of the unit is João Saraiva.

3. Short Presentation of Team Members

In the sequel we introduce a brief presentation of each team member, which
includes, for each of them, up to 5 key publications related to the scientific area
in which this course is proposed.

João Saraiva is auxiliar professor at the Department of Informatics, Universi-
dade do Minho, and a researcher member of CCTC. He obtained a MSc degree
from University do Minho in 1993 and a Ph.D. degree in Computer Science
from Utrecht University in 1999. His main research contributions have been
in the field of program language design and implementation and in program
analysis and transformation. He counts with over 50 international publications
in this area and he has served in over 25 programme committees of internatio-
nal events.

He has experience in participating, coordinating and evaluating research pro-
jects in this area, both at national level with projects funded by FCT (projects:
PURe, IVY, AMADEUS, CROSS, and SSaaPP) and at international level with
projects: "Embedded Attribute Grammars"funded by EPSRC - The Enginee-
ring and Physical Sciences Research Council, UK, contract GR/S02266/01 (pro-
ject developed at Oxford Computing Laboratory with Prof. Dr. Oege de Moor),
and "Applied Semantics II"an European Union Thematic Network, EU contract
IST-2001-38957 (where the he was the site coordinator). He was in the evalu-
ation committees of the grant agencies: ANII Agencia Nacional de Investigación
e Innovación, Uruguay (Fondo Clemente Estable 2007 (FCE 2007), and NWO -

13



Netherlands Organisation for Scientific Research (Physical Sciences division of
the Free Competition, in astronomy, computer science or mathematics, 2009).
Currently, he serves in the programme committee of GPCE’10, SBLP’10 , SB-
Conf’10, and as an external reviewer of “Annual Prize IBM Belgium of infor-
matics /F.R.S./FNRS 2010”.

João Saraiva is one of the founders of the successful series of summer scho-
ols on Generative and Transformational Techniques in Software Engineering
(GTTSE), organized in 2005, 2007 (volumes 4143,and 5235 of LNCS by Springer-
Verlag) and 2009 (LNCS to appear), in Braga. The fourth instance of the school
- GTTSE 2011, is already planned for July 2011 in Braga. He was the organizing
chair of ETAPS’07, The European Joint Conferences on Theory and Practice of
Software, organized in Braga in 2007, and he currently serves as treasurer on
its steering committee.

Key Publications:

• J.C. Silva, C. Silva, R. Goncalo, João Saraiva, J.C. Campos, The GUISur-
fer tool: towards a language independent approach to reverse engineering GUI
code, ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS 2010), June 2010 (accepted).

• Jácome Cunha, João Saraiva and Joost Visser, Discovery-based Edit Assis-
tance for Spreadsheets, 25th IEEE Symposium on Visual Languages and
Human-Centric Computing (VL-HCC’09), Corvallis, Oregon, September
2009, IEEE Press.

• João Carlos Silva, João Saraiva, Jose Creissac Campos, A Generic Library
for GUI Reasoning and Testing, 24th Annual ACM Symposium on Applied
Computing (SAC 2009), Honolulu, Hawaii, USA March 8 - 12, 2009, ACM
Press.

• Jácome Cunha, João Saraiva and Joost Visser, From Spreadsheets to Relatio-
nal Databases and Back, ACM SIGPLAN Symposium on Partial Evaluation
and Program Manipulation (PEPM 2009), Savannah, Georgia, USA, Janu-
ary 19-20, 2009, ACM Press.

• Don S. Batory, Maider Azanza, João Saraiva, The Objects and Arrows of
Computational Design, 11th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2008), Toulouse, France,
September 2008, volume 5301 of LNCS, pag. 1-20, Springer.

Funded Projects (last 5 years):

• Strictification of Circular Programs, FCT/DAAD bilateral agreement 2010-
2011. (Principal Investigator, recommended for funding)

14



• SSaaPP : SpreadSheets as a Programming Paradigm, under FCT contract
PTDC/EIA-CCO/108613/2008. 2010-2013. (Principal Investigator)

• CROSS: - An Infrastructure for Certification and Re-engineering of Open Source
Software, under FCT contract PTDC/EIA-CCO/108995/2008. 2010-2013.

• AMADEUS - Aspects and Compiler Optimizations for Matlab System Deve-
lopment, under FCT contract PTDC/EIA/70271/2006. 2008-2010.

• IVY - A model-based usability analysis environment, under FCT contract POSC/EIA/56646/2004.
2004-2007.

• LerNet - Language Engineering and Rigourous Software Development, Euro-
pean Comission ALFA Programme, 2006-2009.

• PURe - Program Understanding and Re-engineering: Calculi and Application,
under FCT contract POSI/CHS/44304/2002. 2003-2006.

• APPSEM - Applied Semantics II, European Union - Thematic Networks
Programme, under EU contract IST-2001-38957, 2003-2006. (Site Coordi-
nator)

Supervision of PhD projects:

• Pedro Martins, Embedded Attribute Grammars, University of Minho, since
September 2010. (PhD supervisor)

• Jácome Cunha, Foundations of Spreadsheets, FCT grant SFRH/BD/30231/2006,
University of Minho, awarded in March 2011. (PhD supervisor)

• João Carlos Cardoso Silva, Formal Methods and Reverse Engineering Applied
to Interactive Systems, FCT grant SFRH/BD/30729/2006, University of
Minho, awarded in December 2010. (PhD supervisor)

• João Paulo Fernandes, Design, Implementation and Calculation of Circular
Programs, FCT grant SFRH/BD/19186/2004, University of Minho, awar-
ded in March 2009. (PhD supervisor)

• Fábio Tirelo, Semântica Multidimensional de Linguagens de Programação, De-
partamento de Informática, Universidade do Federal de Minas Gerais,
Belo Horizonte, Brazil, awarded in March 2009. (PhD co-supervisor)

João Paulo Fernandes is a Postdoc researcher at the Informatics Department,
University of Minho, a research member of CCTC and a Visiting Professor at

15



the Polytechnic Institute of Porto (part-time position). He received a 5-year
Degree in Computer Science in 2004 and a PhD degree in Computation Foun-
dations in 2009, both from the University of Minho. Previously, he has been the
Co-Chair of the Department of Systems Management and Information Science
and Technology at Universidade Atlântica, a Portuguese private University (in
the school year of 2008/2009), and a Visiting Professor at the same University.

João Fernandes has contributed mainly to the research area of program analy-
sis, manipulation and transformation, specially under calculational form, ha-
ving published several papers in top conferences in this field. He is most in-
terested in exploiting the nice properties of circular lazy programs and their
relation with Attribute Grammars. With his research, he has established dif-
ferent international cooperations, having worked at the University of Oxford,
UK, de la Republica University, Uruguay and the University of Tokyo, Japan.
A research visit to the Max Planck Institute for Software Systems in Germany
is also in preparation.

João Fernandes has served in the organizing committee of the Summer School
on Generative and Transformational Techniques in Software Engineering (GTTSE’09),
and has already served as an external reviewer for international conferences
such as LDTA’09, APLAS’09, SLE’09 and PEPM’10.

Key Publications:

• João Paulo Fernandes, João Saraiva, Daniel Seidel and Janis Voigtlander,
Strictification of Circular Programs, In the proceedings of the 2011 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM11, January 24-25, 2011 Austin, Texas, USA.

• João Paulo Fernandes, Design, Implementation and Calculation of Circular
Programs, PhD thesis, defended in March, 2009. (The thesis is available as
a book, ISBN 3639168968, published by VDM Verlag)

• Alberto Pardo, João Paulo Fernandes and João Saraiva, Shortcut fusion
rules for the derivation of circular and higher-order monadic programs, ACM
SIGPLAN Symposium on Partial Evaluation and Program Manipulation
(PEPM 2009), Savannah, Georgia, USA, January 19-20, 2009, ACM Press.
(selected paper for a special issue of the Journal HOSC, accepted)

• João Paulo Fernandes, Alberto Pardo and João Saraiva, A shortcut fusion
rule for circular program calculation, ACM SIGPLAN workshop on Haskell
(Haskell ’07), pag. 95-106, Freiburg, Germany, January 2007, ACM Press.

• João Paulo Fernandes and João Saraiva, Tools and Libraries to Model and
Manipulate Circular Programs, In Proceedings of the 2007 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, PEPM07,
January 15-16, 2007, ACM Press.

Funded Projects (last 5 years):

16



• Strictification of Circular Programs, FCT/DAAD bilateral agreement 2010-
2011. (recommended for funding)

• SSaaPP : SpreadSheets as a Programming Paradigm, under FCT contract
PTDC/EIA-CCO/108613/2008. 2010-2013.

• PURe - Program Understanding and Re-engineering: Calculi and Application,
under FCT contract POSI/CHS/44304/2002. 2003-2006.

João Cardoso received a 5-year Electronics Engineering from the University
of Aveiro in 1993, and an MSc and a PhD degree in Electrical and Computer
Engineering from the IST/UTL (Technical University of Lisbon), Lisbon, Por-
tugal in 1997 and 2001, respectively. He is currently Associate Professor with
tenure at the Department of Informatics Engineering, Faculty of Engineering
of the University of Porto. Before, he was with the IST/UTL (2006-2008), a se-
nior researcher at INESC-ID (2001-2009), and with the University of Algarve
(1993-2006). In 2001/2002, he worked for PACT XPP Technologies, Inc., Mu-
nich, Germany.

He has participated in the organization of a number of conferences (e.g., RAW’10,
FPL’03, ’07, ’08, ARC’05, ARC’06, ’07) and he serves as a Program Commit-
tee member for various international conferences (e.g., IEEE FPT, IEEE SASP,
FPL, IC-SAMOS, ACM SAC-EMBS, ARC). He serves(ed) as reviewer for va-
rious international scientific journals (e.g., IEEE Transactions on Computers,
IEEE Transactions on VLSI, Elsevier Microprocessors and Microsystems, Else-
vier Journal of Systems Architecture, IEEE Computer Magazine, IEEE Transac-
tions on Education, Elsevier International Journal on Computers and Electri-
cal Engineering, IEEE Transactions on Industrial Electronics, Elsevier Parallel
Computing, IEEE Design & Test of Computers).

He is co-author of a Springer book and co-editor of two Springer LNCS vo-
lumes. He has (co-)authored over 80 scientific publications (including jour-
nal/conference papers and patents) on subjects related to compilers, embed-
ded systems, and reconfigurable computing. He is a member of IEEE, IEEE
Computer Society and a senior member of ACM.

Key Publications:

• Carlos Morra, João M. P. Cardoso, João Bispo, and Juergen Becker, Re-
targeting, Evaluating, and Generating Reconfigurable Array-Based Architec-
tures, in 6th IEEE Symposium on Application Specific Processors (SASP
2008), 8-9 June 2008, Anaheim Convention Center, Anaheim CA, USA,
pp. 34–41.

17



• João M. P. Cardoso, Dynamic Loop Pipelining in Data-Driven Architectures,
in Proc. of the ACM International Conference on Computing Frontiers
(CF’05), Ischia, Italy, 4-6 May 2005, ACM Press, pp. 106-115.

• Rui Rodrigues, João M. P. Cardoso, and Pedro C. Diniz, A Data-Driven
Approach for Pipelining Sequences of Data-Dependent Loops, in 15th Annual
IEEE Symposium on Field Programmable Custom Computing Machines
(FCCM’07), Napa Valley, CA, USA, April 23 - April 25, 2007, IEEE Com-
puter Society Press.

• João M. P. Cardoso, and Markus Weinhardt, From C Programs to the Configure-
Execute Model, in Proc. of the Design, Automation and Test in Europe
Conference (DATE’03), Munich, Germany, March 3-7, 2003, IEEE Com-
puter Society Press, pp. 576-581.

• João M. P. Cardoso, On Combining Temporal Partitioning and Sharing of
Functional Units in Compilation for Reconfigurable Architectures, in IEEE Tran-
sactions on Computers, Vol. 52, No. 10, October 2003, pp. 1362-1375.

Funded Projects (last 5 years):

• Member of the European Network of Excellence on High Performance
and Embedded Architecture and Compilation (HiPEAC), http://www.hipeac.net/

• REFLECT: Rendering FPGAs to Multi-Core Embedded Computing, Coordi-
nator of WP4 and leader of FEUP partnership, Project Number 248976,
FP7-ICT-2009-4, Activity: ICT-2009.3.6 Computing Systems. Duration in
months: 36 (start: January 2010).

• “AMADEUS: Aspects and Compiler Optimizations for Matlab System Deve-
lopment”, Funded by FCT, PTDC/EIA/70271/2006. (Project coordinator).

• “COBAYA: closing the compilation gap between algorithms and coarse-grained
reconfigurable array architectures”; Funded by FCT, PTDC/EEA-ELC/70272/2006.
(Project coordinator)

Supervision of PhD projects:

• João Cardoso supervised 3 PhD projects and co-supervisor one PhD pro-
ject.

Rui Maranhão (publishes as Rui Abreu) graduated in Systems and Computer
Engineering from University of Minho, Portugal, carrying out his graduation

18



thesis project at Siemens S.A., Portugal. Between September 2002 and February
2003, Rui followed courses of the Software Technology Master Course at Uni-
versity of Utrecht, the Netherlands, as an Erasmus Exchage Student. He was
an intern researcher at Philips Research Labs, the Netherlands, between Octo-
ber 2004 and June 2005. He received his Ph.D. degree from the Delft University
of Technology, the Netherlands, in November 2009. During his PhD studies
period (2005-2009) he was also a research associate at the Embedded Systems
Institute, the Netherlands. Currently, he is an assistant professor at the Faculty
of Engineering of University of Porto, Portugal.

Key Publications:

• R. Abreu, P.Zoeteweij, and A.J.C. van Gemund, Spectrum-based Multi-
ple Fault Localization. In Proceedings of the 24th International Confe-
rence on Automated Software Engeneering (ASE’09), pp. 88–99, Auc-
kland, New Zealand, November 2009. IEEE Society.

• R. Abreu, P. Zoeteweij, R. Golsteijn, and A.J.C. van Gemund, A Practical
Evaluation of Spectrum-based Fault Localization. Journal of Systems and
Software (JSS), Elsevier, 2009.

• R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, A New Bayesian Ap-
proach to Multiple Intermittent Fault Diagnosis. In Proceedings of the
21st International Joint Conference on Artifical Intelligence (IJCAI’09),
pp. 653–658, Pasadena, CA, USA, July 2009. AAAI Press.

• R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, On the Accuracy of
Spectrum-based Fault Localization. In Proceedings of the Testing: Acade-
mia and Industry Conference - Practice And Research Techniques (TAIC
PART’07), pp. 89–98, Windsor, United Kingdom, September 2007. IEEE
Computer Society.

• T. Janssen, R. Abreu, and A.J.C. van Gemund, Zoltar: A Toolset for Au-
tomatic Fault Localization. In Proceedings of the 24th International Con-
ference on Automated Software Engeneering (ASE’09) - Tools Track, pp.
662–664, Auckland, New Zealand, November 2009. IEEE Computer So-
ciety. (Best Demo Award)

Funded Projects (last 5 years):

• SSaaPP : SpreadSheets as a Programming Paradigm, under FCT contract
PTDC/EIA-CCO/108613/2008. 2010-2013.

• TRADER: Systems Reliability, Embedded Systems Institute, the Nether-
lands.

19


